In order to minimizing the rotor displacement and the amplifier current mainly caused by the unbalance forces when the flexible rotor passes the first bending critical speed, the optimal controller is presented in this paper. The accurate modeling method for the flexible rotor based on the sine sweeping measurements is investigated. The design of the Kalman estimator and the choice of the variance matrix elements have been described. The optimal state feedback regulator with an integral controller has been used for stabilizing the system and the determination of the weight matrices has been investigated in detail. The influences of the specific elements of the weight matrices on the resonance peak of the flexible rotor when passing the first bending critical speed are analyzed. Finally, the running up test of the flexible rotor is implemented and the result shows the effectiveness of linear quadratic Gaussian (LQG) controller minimizing the rotor displacement and the amplifier current nearby the first bending critical speed. Furthermore, the comparison between the proportional-integral-differential (PID) controller with phase lead compensator and the LQG controller verifies the superiority of LQG controller in reducing the amplifier currents.

References

References
1.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
.
2.
Park
,
Y.
,
2014
, “
Design and Implementation of an Electromagnetic Levitation System for Active Magnetic Bearing Wheels
,”
IET Control Theory A
,
8
(
2
), pp.
139
148
.10.1049/iet-cta.2013.0450
3.
Ren
,
Y.
,
Su
,
D.
, and
Fang
,
J.
,
2013
, “
Whirling Modes Stability Criterion for a Magnetically Suspended Flywheel Rotor With Significant Gyroscopic Effects and Bending Modes
,”
IEEE Trans. Power Electron.
,
28
(
12
), pp.
5890
5901
.10.1109/TPEL.2013.2253126
4.
Fang
,
J.
,
Zhou
,
X.
, and
Liu
,
G.
,
2013
, “
Precise Accelerated Torque Control for Small Inductance Brushless DC Motor
,”
IEEE Trans. Power Electron.
,
28
(
3
), pp.
1400
1412
.10.1109/TPEL.2012.2210251
5.
Fang
,
J.
, and
Ren
,
Y.
,
2012
, “
Decoupling Control of a Magnetically Suspended Rotorin a Control Moment Gyro Based on Inverse System Method
,”
IEEE/ASME Trans. Mechatron.
,
17
(
6
), pp.
1133
1144
.10.1109/TMECH.2011.2159618
6.
Ren
,
Y.
, and
Fang
,
J.
,
2014
, “
High-Precision and Strong-Robustness Control for an MSCMG Based on Modal Separation and Rotation Motion Decoupling Strategy
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1539
1551
.10.1109/TIE.2013.2257147
7.
Abrahamsson
,
J.
,
Hedlund
,
M.
,
Kamf
,
T.
, and
Bernhoff
,
H.
,
2014
, “
High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings
,”
IEEE Trans. Ind. Electron.
,
61
(
6
), pp.
3012
3021
.10.1109/TIE.2013.2259782
8.
Fan
,
Y.
,
Jiang
,
Y.
,
Chen
,
R.-J.
,
Lee
,
Y.-T.
, and
Wu
,
T.-W.
,
2008
, “
Adaptive Variable Structure Controller Design of Turbomolecular Pump With Active Magnetic Bearings
,”
3rd IEEE Conference on Industrial Electronics and Applications
(
ICIEA 2008
),
Singapore
, June 3–5, pp.
1060
1065
.10.1109/ICIEA.2008.4582679
9.
Wang
,
D.
,
Wang
,
F.
, and
Bai
,
H.
,
2009
, “
Design and Performance of QFT-H-Infinity Controller for Magnetic Bearing of High-Speed Motors
,”
4th IEEE Conference on Industrial Electronics and Applications
(
ICIEA 2009
),
Xi'an, China
, May 25–27, pp.
2624
2629
.10.1109/ICIEA.2009.5138683
10.
Yang
,
S.-M.
,
2011
, “
Electromagnetic Actuator Implementation and Control for Resonance Vibration Reduction in Miniature Magnetically Levitated Rotating Machines
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
611
617
.10.1109/TIE.2010.2046000
11.
Polit
,
S.
, and
Dong
,
J.
,
2010
, “
Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nonmanufacturing
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
724
733
.10.1109/TMECH.2010.2052107
12.
Park
,
S. H.
, and
Lee
,
C. W.
,
2010
, “
Design and Control of Hybrid-Type Three-Pole Active Magnetic Bearings Using Redundant Coordinates
,”
J. Vib. Control
,
16
(
4
), pp.
601
614
.10.1177/1077546309106152
13.
Wai
,
R. J.
,
Lee
,
J. D.
, and
Chuang
,
K. L.
,
2011
, “
Real-Time PID Control Strategy for Maglev Transportation System Via Particle Swarm Optimization
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
629
646
.10.1109/TIE.2010.2046004
14.
Arredondo
,
I.
,
Jugo
,
J.
, and
Etxebarria
,
V.
,
2008
, “
Modeling and Control of a Flexible Rotor System With AMB-Based Sustentation
,”
Elsevier ISA Trans.
,
47
(
1
), pp.
101
112
.10.1016/j.isatra.2007.04.004
15.
Ito
,
M.
,
Fujiwara
,
H.
, and
Matsushita
,
O.
,
2010
, “
Q-Value Evaluation and Rotational Test of Flexible Rotor Supported by AMBs
,”
JSME J. Syst. Des. Dyn.
,
4
(
5
), pp.
725
737
.10.1299/jsdd.4.725
16.
Lei
,
S.
, and
Palazzolo
,
A.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
ASME J. Sound Vib.
,
314
(
1–2
), pp.
19
38
.10.1016/j.jsv.2007.12.028
17.
Iqbal
,
A.
,
Wu
,
Z.
, and
Ben Amara
,
F.
,
2010
, “
Mixed-Sensitivity H∞ Control of Magnetic-Fluid-Deformable Mirrors
,”
IEEE/ASME Trans. Mechatron.
,
15
(
4
), pp.
548
556
.10.1109/TMECH.2010.2051452
18.
Lee
,
C.
, and
Salapaka
,
S.
,
2009
, “
Fast Robust Nanopositioning Linear Matrix Inequalities Based Optimal Control Approach
,”
IEEE/ASME Trans. Mechatron.
,
14
(
4
), pp.
414
422
.10.1109/TMECH.2009.2023903
19.
Necip Sahinkaya
,
M.
,
Abulrub
,
A. G.
, and
Burrows
,
C. R.
,
2011
, “
An Adaptive Multi-Objective Controller for Flexible Rotor and Magnetic Bearing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), pp.
81
89
.10.1115/1.4003421
20.
Mushi
,
S. E.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2012
, “
Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig
,”
IEEE Trans. Mechatron.
,
17
(
6
), pp.
1170
1182
.10.1109/TMECH.2011.2160456
21.
Fang
,
J.
,
Zheng
,
S.
, and
Han
,
B.
,
2013
, “
AMB Vibration Control for Structural Resonance of Double-Gimbal Control Moment Gyro With High-Speed Magnetically Suspended Rotor
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
32
43
.10.1109/TMECH.2011.2161877
22.
Jang
,
M. J.
,
Chen
,
C. L.
, and
Tsao
,
Y. M.
,
2005
, “
Sliding Mode Control for Active Magnetic Bearing System With Flexible Rotor
,”
ASME J. Franklin Inst.
,
342
(
4
), pp.
401
419
.10.1016/j.jfranklin.2005.01.006
23.
Garofalo
,
F.
,
Marino
,
P.
, and
Scala
,
S.
,
1996
, “
Control of DC-DC Converters With Linear Optimal Feedback and Nonlinear Feedforward
,”
IEEE Trans. Power Electron.
,
9
(
6
), pp.
607
615
.10.1109/63.334776
24.
Priewasser
,
R.
,
Agostinelli
,
M.
, and
Unterrieder
,
C.
,
2014
, “
Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation
,”
IEEE Trans. Power Electron.
,
29
(
1
), pp.
287
301
.10.1109/TPEL.2013.2248751
25.
Roes
,
M. G. L.
,
Duarte
,
J. L.
, and
Hendrix
,
M. A. M.
,
2011
, “
Disturbance Observer-Based Control of a Dual-Output LLC Converter for Solid-State Lighting Applications
,”
IEEE Trans. Power Electron.
,
29
(
1
), pp.
2018
2027
.10.1109/IPEC.2010.5542073
26.
Habibullah
,
H.
,
Pota
,
H. R.
,
Peterson
,
I. R.
, and
Rana
,
M. S.
,
2014
, “
Tracking of Triangular Reference Signals Using LQG Controllers for Lateral Positioning of an AFM Scanner Stage
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1105
1114
.10.1109/TMECH.2013.2270560
27.
Camblong
,
H.
,
Nourdine
,
S.
,
Vechiu
,
I.
, and
Tapia
,
G.
,
2012
, “
Comparison of an Island Wind Turbine Collective and Individual Pitch LQG Controllers Designed to Alleviate Fatigue Loads
,”
IET Renew. Power Gener.
,
6
(
4
), pp.
267
275
.10.1049/iet-rpg.2011.0072
28.
Barut
,
M.
,
Bogosyan
,
S.
, and
Gokasan
,
M.
,
2007
, “
Speed-Sensorless Estimation for Induction Motors Using Extended Kalman Filters
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
272
280
.10.1109/TIE.2006.885123
29.
Xiao
,
Y.
,
Zhu
,
K. Y.
,
Zhang
,
C.
,
Tseng
,
K. J.
, and
Ling
,
K. V.
,
2004
, “
Stabilizing Synchronization Control of Magnetic Bearing-Based Flywheel Energy Storage Systems
,”
8th International Control, Automation, Robotics and Vision Conference
(
ICARCV 2004
)
Kunming, China
, Dec. 6–9, pp.
1711
1716
.10.1109/ICARCV.2004.1469416
30.
Darbandi
,
S. M.
,
Behzad
,
M.
,
Salarieh
,
H.
, and
Mehdigholi
,
H.
,
2013
, “
Linear Output Feedback Control of a Three-Pole Magnetic Bearing
,”
IEEE Trans. Mechatron.
,
19
(
4
), pp.
1323
1330
.10.1109/TMECH.2013.2280594
31.
Schuhmann
,
T.
,
Hofmann
,
W.
, and
Werner
,
R.
,
2012
, “
Improving Operational Performance of Active Magnetic Bearings Using Kalman Filter and State Feedback Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
821
829
.10.1109/TIE.2011.2161056
32.
Zhu
,
L.
, and
Knospe
,
C.
,
2010
, “
Modeling of Nonlaminated Electromagnetic Suspension Systems
,”
IEEE/ASME Trans. Mechatron.
,
15
(
1
), pp.
59
69
.10.1109/TMECH.2009.2016656
33.
Arredondo
,
I.
,
Jugo
,
J.
, and
Etxebarria
,
V.
,
2008
, “
Modeling and Control of a Flexible Rotor System With AMB-Based Sustentation
,”
ASME ISA Trans.
,
47
(
4
), pp.
101
112
.10.1016/j.isatra.2007.04.004
34.
Li
,
G.
,
Lin
,
Z.
,
Allaire
,
P. E.
, and
Luo
,
J.
,
2006
, “
Modeling of a High Speed Rotor Test Rig With Active Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
128
(
3
), pp.
269
281
.10.1115/1.2172254
35.
Li
,
G.
,
2007
, “
Robust Stabilization of Rotor-Active Magnetic Bearing Systems
,” Ph.D. dissertation, University of Virginia, Charlottesville, VA.
You do not currently have access to this content.