In the context of lean premixed combustion, the prevention of upstream flame propagation in the premixing zone, referred to as flashback (FB), is a crucial challenge related to the application of hydrogen as a fuel for gas turbines. The location of flame anchoring and its impact on FB tendencies in a technically premixed, swirl-stabilized hydrogen burner are investigated experimentally at atmospheric pressure conditions using planar laser-induced fluorescence of hydroxyl radicals (OH-PLIF). The inlet conditions are systematically varied with respect to equivalence ratio (ϕ=0.21.0), bulk air velocity u0 = 30–90 m/s, and burner preheat temperature ranging from 300 K to 700 K. The burner is mounted in an atmospheric combustion test rig, firing at a power of up to 220 kW into a 105 mm diameter quartz cylinder, which provides optical access to the flame region. The experiments were performed using an in-house burner design that previously proved to be highly resistant against FB occurrence by applying the axial air injection strategy. Axial air injection constitutes a nonswirling air jet on the central axis of the radial swirl generator. While a high rate of axial air injection yields excellent FB resistance, reduced rates of air injection are utilized to trigger FB, which allowed to investigate the near FB flame behavior. Results show that both, fuel momentum of hydrogen and axial air injection, alter the isothermal flow field as they cause a downstream shift of vortex breakdown and, thus, the axial flame front location. Such a shift is proven beneficial for FB resistance from the recorded FB limits. This effect was quantified by applying an edge detection algorithm to the OH-PLIF images, in order to extract the location of maximum flame front probability xF. By these means, it was revealed that for hydrogen xF is shifted downstream with increasing equivalence ratio due to the added momentum of the fuel flow, superseding any parallel augmentation in the turbulent flame speed. The parameter xF is identified to be governed by J, the momentum ratio between fuel and air flow, over a wide range of inlet conditions. These results contribute to the understanding of the sensitivity of FB to changes in the flow field, stemming from geometry changes or specific fuel properties.

References

1.
Brand
,
J.
,
Sampath
,
S.
, and
Shum
,
F.
,
2003
, “
Potential Use of Hydrogen in Air Propulsion
,”
AIAA
Paper No. 2003-2879.
2.
Corchero
,
G.
, and
Montañés
,
J. L.
,
2005
, “
An Approach to the Use of Hydrogen for Commercial Aircraft Engines
,”
Proc. Inst. Mech. Eng., Part G
,
219
(
1
), pp.
35
44
.
3.
Haglind
,
F.
, and
Singh
,
R.
,
2006
, “
Design of Aero Gas Turbines Using Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
754
764
.
4.
Rao
,
A. G.
,
Yin
,
F.
, and
van Buijtenen
,
J. P.
,
2014
, “
A Hybrid Engine Concept for Multi-Fuel Blended Wing Body
,”
Aircr. Eng. Aerosp. Technol.
,
86
(
6
), pp.
483
493
.
5.
Levy
,
Y.
,
Sherbaum
,
V.
, and
Arfi
,
P.
,
2004
, “
Basic Thermodynamics of FLOXCOM, the Low-NOx Gas Turbines Adiabatic Combustor
,”
Appl. Therm. Eng.
,
24
(
11
), pp.
1593
1605
.
6.
Döbbeling
,
K.
, and
Hellat
,
J.
,
2007
, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
2
12
.
7.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
8.
Schefer
,
R.
,
Smith
,
T. D.
, and
Marek
,
J. C.
,
2002
, “
Evaluation of NASA Lean Premixed Hydrogen Burner
,”
Sandia National Laboratories
,
Livermore, CA
, Report No. SAND2002-8609.
9.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Flow Field Manipulation by Axial Air Injection to Achieve Flashback Resistance and Its Impact on Mixing Quality
,”
AIAA
Paper No. 2013-2603.
10.
Fric
,
T. F.
,
1993
, “
Effects of Fuel-Air Unmixedness on NO(x) Emissions
,”
J. Propul. Power
,
9
(
5
), pp.
708
713
.
11.
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2013
, “
Experimental Investigation on the Effect of Boundary Layer Fluid Injection on the Flashback Propensity of Premixed Hydrogen-Air Flames
,”
ASME
Paper No. GT2013-94266.
12.
Burmberger
,
S.
, and
Sattelmayer
,
T.
,
2011
, “
Optimization of the Aerodynamic Flame Stabilization for Fuel Flexible Gas Turbine Premix Burners
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
101501
.
13.
Reichel
,
T.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2014
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.
14.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031506
.
15.
Sangl
,
J.
,
Mayer
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071501
.
16.
Terhaar
,
S.
,
Reichel
,
T. G.
,
Schrödinger
,
C.
,
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2015
, “
Vortex Breakdown Types and Global Modes in Swirling Combustor Flows With Axial Injection
,”
J. Propul. Power
,
31
(
1
), pp.
219
229
.
17.
Schefer
,
R.
,
Wicksall
,
D.
, and
Agrawal
,
A.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.
18.
Lantz
,
A.
,
Collin
,
R.
,
Aldén
,
M.
,
Lindholm
,
A.
,
Larfeldt
,
J.
, and
Lörstad
,
D.
,
2014
, “
Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging
,”
ASME
Paper No. GT2014-26293.
19.
Sadanandan
,
R.
,
Lückerath
,
R.
,
Meier
,
W.
, and
Wahl
,
C.
,
2011
, “
Flame Characteristics and Emissions in Flameless Combustion Under Gas Turbine Relevant Conditions
,”
J. Propul. Power
,
27
(
5
), pp.
970
980
.
20.
Emadi
,
M.
,
Karkow
,
D.
,
Salameh
,
T.
,
Gohil
,
A.
, and
Ratner
,
A.
,
2012
, “
Flame Structure Changes Resulting From Hydrogen-Enrichment and Pressurization for Low-Swirl Premixed Methane–Air Flames
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
10397
10404
.
21.
Göckeler
,
K.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Laminar Burning Velocities and Emissions of Hydrogen–Methane–Air–Steam Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031503
.
22.
Strakey
,
P. A.
,
Woodruff
,
S. D.
,
Williams
,
T. C.
, and
Schefer
,
R. W.
,
2008
, “
OH-Planar Fluorescence Measurements of Pressurized, Hydrogen Premixed Flames in the SimVal Combustor
,”
AIAA J.
,
46
(
7
), pp.
1604
1613
.
23.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J.
,
2009
, “
Dynamics, NOx and Flashback Characteristics of Confined Premixed Hydrogen-Enriched Methane Flames
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
496
506
.
24.
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Krüger
,
O.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet
,”
ASME
Paper No. GT2015-43382.
25.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam Diluted Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041503
.
26.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.
27.
Göckeler
,
K.
,
Göke
,
S.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2010
, “
Enhanced Recirculation in the Cold Flow Field of a Swirl-Stabilized Burner for Ultra Wet Combustion
,”
International Conference Jets
, Wakes Separated Flows (ICJWSF-2010), Cincinnati, OH, Sept. 27–30.
28.
Eckbreth
,
A. C.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
, Vol.
3
,
CRC Press
,
Boca Raton, FL
.
29.
Boxx
,
I.
,
Slabaugh
,
C.
,
Kutne
,
P.
,
Lucht
,
R.
, and
Meier
,
W.
,
2014
, “
3 kHz PIV/OH-PLIF Measurements in a Gas Turbine Combustor at Elevated Pressure
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3793
3802
.
30.
Donbar
,
J. M.
,
Driscoll
,
J. F.
, and
Carter
,
C. D.
,
2000
, “
Reaction Zone Structure in Turbulent Nonpremixed Jet Flames—From CH-OH PLIF Images
,”
Combust. Flame
,
122
(
1–2
), pp.
1
19
.
31.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
90
(
3–4
), pp.
609
618
.
You do not currently have access to this content.