In the present study, a chamfered piston crown design was used in order to reduce unburned hydrocarbon (UHC) emissions from the ring-pack crevice. Compared to the conventional piston design, the chamfered piston showed 17–41% reduction in the crevice-borne UHC emissions in homogeneous charge compression ignition (HCCI) combustion. Through parametric sweeps 6 mm was identified to be a suitable chamfer size and the mechanism of the UHC reduction was revealed. Based on the findings in this study, the chamfered piston design was also tested in dual-fuel reactivity controlled compression ignition (RCCI) combustion. In the tested RCCI case using the chamfered piston the UHC and CO emissions were reduced by 79% and 36%, respectively, achieving 99.5% combustion efficiency. This also improved gross indicated thermal efficiency (gITE) from 51.1% to 51.8% in a 9 bar indicated mean effective pressure (IMEP) RCCI combustion case.

References

References
1.
Durrett
,
R. P.
,
2013
, “
Advantages and Challenges of Lean Combustion in Automotive IC Engines
,”
Engine Research Center—2013 Symposium
, Madison, WI, June 5–6, http://www.erc.wisc.edu/documents/symp13-Durrett.pdf
2.
Reitz
,
R. D.
,
2013
, “
Directions in Internal Combustion Engine Research
,”
Combust. Flame
,
160
(
1
), pp.
1
8
.10.1016/j.combustflame.2012.11.002
3.
American Cancer Society
,
2013
, “
Diesel Exhaust
,” American Cancer Society, Atlanta, GA, accessed Mar. 20, 2014, http://www.cancer.org/cancer/cancercauses/othercarcinogens/pollution/diesel-exhaust
4.
DieselNet
,
2007
, “
Emission Standards: United States: Heavy-Duty Onroad Engines, Model Year 2007 and Later
,” Ecopoint Inc., Mississauga, ON, Canada, accessed Mar. 20, 2014, http://www.dieselnet.com/standards/us/hd.php#y2007
5.
Majewski
,
W. A.
,
2007
, “
Diesel Emission Control
,” Ecopoint Inc., Mississauga, ON, Canada, accessed Mar. 20, 2014, http://www.dieselnet.com/tech/engine_control.php
6.
Yang
,
Y.
,
Dec
,
J. E.
,
Dronniou
,
N.
, and
Sjoberg
,
M.
,
2011
, “
Tailoring HCCI Heat-Release Rates With Partial Fuel Stratification: Comparison of Two-Stage and Single-Stage-Ignition Fuels
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3047
3055
.10.1016/j.proci.2010.06.114
7.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D.
,
Reitz
,
R.
, and
Durrett
,
R.
,
2012
, “
Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1109
1132
.10.4271/2012-01-1131
8.
Shen
,
M.
,
Tuner
,
M.
, and
Johansson
,
B.
,
2013
, “
Close to Stoichiometric Partially Premixed Combustion—The Benefit of Ethanol in Comparison to Conventional Fuels
,”
SAE
Paper No. 2013-01-0277.10.4271/2013-01-0277
9.
Splitter
,
D.
,
Wissink
,
M.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2012
, “
Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency
,”
SAE
Paper No. 2012-01-0383.10.4271/2012-01-0383
10.
Amann
,
M.
,
Alger
,
T.
,
Westmoreland
,
B.
, and
Rothmaier
,
A.
,
2012
, “
The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1216
1228
.10.4271/2012-01-1148
11.
Königsson
,
F.
,
Kuyper
,
J.
,
Stalhammar
,
P.
, and
Angstrom
,
H.-E.
,
2013
, “
The Influence of Crevices on Hydrocarbon Emissions From a Diesel-Methane Dual Fuel Engine
,”
SAE Int. J. Engines
,
6
(
2
), pp.
751
765
.10.4271/2013-01-0848
12.
Königsson
,
F.
,
Stalhammar
,
P.
, and
Angstrom
,
H.-E.
, “
Characterization and Potential of Dual Fuel Combustion in a Modern Diesel Engine
,”
SAE
Paper No. 2011-01-2223.10.4271/2011-01-2223
13.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2009
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
.10.4271/2009-01-2647
14.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2010
, “
Improving Engine Performance by Optimizing Fuel Reactivity With a Dual Fuel PCCI Strategy
,”
Thermo- and Fluid Dynamic Processes in Diesel Engines
, Conference (
THIESEL 2010
), Valencia, Spain, Sept. 14–17.http://scholar.google.com/scholar?oi=bibs&cluster=4448822486020274172&btnI=1&hl=en
15.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
16.
Hanson
,
R.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load
,”
SAE Int. J. Engines
,
4
(
1
), pp.
394
411
.10.4271/2011-01-0361
17.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,”
Los Alamos National Laboratory
, Los Alamos, NM, Report No. LA-13313-MS.10.2172/505339
18.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, Improvement to KIVA-3V
,”
Los Alamos National Laboratory
, Los Alamos, NM, Report No. LA-UR-99-915.10.2172/9452
19.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin–Helmholtz/Rayleigh–Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
20.
Abani
,
N.
,
Munnannur
,
A.
, and
Reitz
,
R. D.
,
2008
, “
Reduction of Numerical Parameter Dependencies in Diesel Spray Models
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032809
.10.1115/1.2830867
21.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
22.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k–ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
23.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
24.
Ra
,
Y.
,
Reitz
,
R. D.
,
Jarrett
,
M. W.
, and
Shyu
,
T. P.
,
2006
, “
Effects of Piston Crevice Flows and Lubricant Oil Vaporization on Diesel Engine Deposits
,”
SAE
Paper No. 2006-01-1149.10.4271/2006-01-1149
25.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S. W.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,”
SAE
Paper No. 2008-01-0970.10.4271/2008-01-0970
26.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2012
, “
An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling With Large Reaction Mechanisms
,”
Energy Fuels
,
26
(
8
), pp.
4804
4822
.10.1021/ef300747n
27.
Perini
,
F.
,
2013
, “
High-Dimensional, Unsupervised Cell Clustering for Computationally Efficient Engine Simulations With Detailed Combustion Chemistry
,”
Fuel
,
106
, pp.
344
356
.10.1016/j.fuel.2012.11.015
28.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.10.1016/j.combustflame.2008.05.002
29.
Marriott
,
C. D.
,
2001
, “
An Experimental Investigation of Direct Injection for Homogeneous and Fuel-Stratified Charge Compression Ignited Combustion Timing Control
,” M.S. thesis in Mechanical Engineering, University of Wisconsin, Madison, Madison, WI.
30.
Tamagna
,
D.
,
Ra
,
Y.
, and
Reitz
,
R. D.
,
2007
, “
Multidimensional Simulation of PCCI Combustion Using Gasoline and Dual-Fuel Direct Injection With Detailed Chemical Kinetics
,”
SAE
Paper No. 2007-01-019010.4271/2007-01-0190.
You do not currently have access to this content.