Filtration characteristics of fuel neutral soot particulate were studied using a recently developed heterogeneous multiscale filtration (HMF) model. In the HMF model, a probability density function (PDF) based pore size distribution and a porosity distribution across the filter wall are introduced to represent the heterogeneous multiscale porous structure. The HMF model was validated by an exhaust filtration analysis (EFA) system, which was designed for fundamental experimental filtration studies. Various sources of particulates from combustion engines were used in the filtration studies. Some particulates were sampled from a spark ignited direct injection (SIDI) engine fueled with gasoline and ethanol blends. Particulates from a compression ignition engine fueled with diesel for conventional and advanced combustion regimes were investigated as well. The microstructure of the porous wall was found to be more critical and necessary to simulate filtration of particulates from gasoline and advanced diesel combustion engines than those from conventional diesel combustion (CDC) engines. The interactions between the porous wall and trapped particulates were investigated. The dynamic filtration characteristics, including filtration efficiency, pressure drop and particulate distribution inside the wall are strongly dependent on total particulate volume rather than total particulate number concentration. The change of the filter structure as well as the shape of the particulate size distribution play important roles on particulate penetration.

References

References
1.
Konstandopoulos
,
A.
, and
Johnson
,
J.
,
1989
, “
Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency
,”
SAE
Paper No. 89040510.4271/890405.
2.
Konstandopoulos
,
A.
,
Kostoglou
,
M.
,
Skaperdas
,
E.
,
Papaioannou
,
E.
,
Zarvalis
,
D.
, and
Kladopolou
,
E.
,
2000
, “
Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging
,”
SAE
Paper No. 2000-01-101610.4271/2000-01-1016.
3.
Zhao
,
F.
,
Lai
,
M.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.10.1016/S0360-1285(99)00004-0
4.
Lee
,
K.
,
Seong
,
H.
,
Sakai
,
S.
,
Hageman
,
M.
, and
Rothamer
,
D.
,
2013
, “
Detailed Morphological Properties of Nanoparticles From Gasoline Direct Injection Engine Combustion of Ethanol Blends
,”
SAE
Paper No. 2013-24-018510.4271/2013-24-0185.
5.
Storey
,
J.
,
Barone
,
T.
,
Norman
,
K.
, and
Lewis
,
S.
,
2010
, “
Ethanol Blend Effects on Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
650
659
10.4271/2010-01-2129.
6.
Gaddam
,
C. K.
, and
Vander Wal
,
R. L.
,
2012
, “
Emissions From Ethanol–Gasoline Blends: Physical & Chemical Characterization of SIDI Particulates
,”
2012 DOE Crosscut Workshop on Lean Emissions Reduction Simulation (CLEERS)
, Dearborn, MI, Apr. 30–May 2.
7.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2009
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
10.4271/2009-01-2647.
8.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
,
Kaddatz
,
J.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
360
374
10.4271/2011-01-0357.
9.
Prikhodko
,
V.
,
Curran
,
S.
,
Barone
,
T.
,
Lewis
,
S.
,
Storey
,
J.
,
Cho
,
K.
,
Wagner
,
R.
, and
Parks
,
J.
,
2010
, “
Emission Characteristics of a Diesel Engine Operating With In-Cylinder Gasoline and Diesel Fuel Blending
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
946
955
10.4271/2010-01-2266.
10.
Richter
,
J.
,
Klingmann
,
R.
,
Spiess
,
S.
, and
Wong
,
K.
,
2012
, “
Application of Catalyzed Gasoline Particulate Filters to GDI Vehicles
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1361
1370
.10.4271/2012-01-1244
11.
Chan
,
T.
,
Meloche
,
E.
,
Kubsh
,
J.
,
Rosenblatt
,
D.
,
Brenzy
,
R.
, and
Rideout
,
G.
,
2012
, “
Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions From a Gasoline Direct Injection Vehicle
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1277
1290
.10.4271/2012-01-1727
12.
Shimoda
,
T.
,
Ito
,
Y.
,
Saito
,
C.
,
Nakatani
,
T.
,
Shibagaki
,
Y.
,
Yuuki
,
K.
,
Sakamoto
,
H.
,
Vogt
,
C.
,
Matsumoto
,
T.
,
Furuta
,
Y.
,
Heuss
,
W.
,
Kattouah
,
P.
, and
Makino
,
M.
,
2012
, “
Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission
,”
SAE
Paper No. 2012-01-124110.4271/2012-01-1241.
13.
Matteson
,
M. J.
, and
Orr
,
C.
,
1987
,
Filtration: Principles and Practices
,
2nd ed.
,
Marcel Dekker
,
New York
.
14.
Hanamura
,
K.
,
Karin
,
P.
,
Cui
,
L.
,
Rubio
,
P.
,
Tsuruta
,
T.
,
Tanaka
,
T.
, and
Suzuki
,
T.
,
2009
, “
Micro- and Macroscopic Visualization of Particulate Matter Trapping and Regeneration Processes in Wall-Flow Diesel Particulate Filters
,”
Int. J. Engine Res.
,
10
(
5
), pp.
305
321
.10.1243/14680874JER04209
15.
Liati
,
A.
, and
Eggenschwiler
,
D. P.
,
2010
, “
Characterization of Particulate Matter Deposited in Diesel Particulate Filters: Visual and Analytical Approach in Macro-, Micro- and Nano-Scales
,”
Combust. Flame
,
157
(
9
), pp.
1658
1670
.10.1016/j.combustflame.2010.02.015
16.
Choi
,
S.
, and
Lee
,
K.
,
2013
, “
Detailed Investigation of Soot Deposition and Oxidation Characteristics in a Diesel Particulate Filter Using Optical Visualization
,”
SAE
Paper No. 2013-01-052810.4271/2013-01-0528.
17.
Yamamoto
,
K.
, and
Yamauchi
,
K.
,
2013
, “
Numerical Simulation of Continuously Regenerating Diesel Particulate Filter
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3083
3090
.10.1016/j.proci.2012.06.117
18.
Konstandopoulos
,
A.
,
Kostoglou
,
M.
,
Lorentzou
,
S.
, and
Vlachos
,
N.
,
2012
, “
Aspects of Multifunctional Diesel Particulate Filters and Their Efficient Simulation
,”
Catal. Today
,
188
(
1
), pp.
2
13
.10.1016/j.cattod.2012.03.022
19.
Gong
,
J.
, and
Rutland
,
C.
,
2011
, “
Pulsed Regeneration for DPF Aftertreatment Devices
,”
SAE
Paper No. 2011-24-018210.4271/2011-24-0182.
20.
Kato
,
H.
,
Ito
,
K.
,
Suda
,
H.
,
Kusaka
,
J.
,
Mori
,
T.
,
Tsurumi
,
F.
,
Masaki
,
N.
,
Hirata
,
K.
, and
Akagawa
,
H.
,
2011
, “
Development of a Quasi-Two-Dimensional Model for Analysing Continuous Regeneration—Diesel Particulate Filter States During Continuous and Active Regeneration
,”
Int. J. Engine Res.
,
12
(
1
), pp.
1
13
10.1243/14680874JER392464.
21.
Basu
,
S.
,
Henrichsen
,
M.
,
Tandon
,
P.
,
He
,
S.
, and
Heibel
,
A.
,
2013
, “
Filtration Efficiency and Pressure Drop Performance of Ceramic Partial Wall Flow Diesel Particulate Filters
,”
SAE Int. J. Fuels Lubr.
6
(
3
), pp.
877
893
.10.4271/2013-01-9072
22.
Viswanathan
,
S.
,
Rakovec
,
N.
, and
Foster
,
D. E.
,
2012
, “
Microscale Study of Ash Accumulation Process in DPF Walls Using the Diesel Exhaust Filtration Analysis (DEFA) System
,”
ASME
Paper No. ICEF2012-9210410.1115/ICEF2012-92104.
23.
Viswanathan
,
S.
,
Sakai
,
S.
, and
Rothamer
,
D.
,
2014
, “
Design & Evaluation of an Exhaust Filtration Analysis (EFA) System
,”
SAE
Paper No. 2014-01-155810.4271/2014-01-1558.
24.
Lee
,
K. W.
, and
Gieseke
,
J. A.
,
1979
, “
Collection of Aerosol Particles by Packed Beds
,”
Environ. Sci. Technol.
,
13
(
4
), pp.
466
470
.10.1021/es60152a013
25.
Gong
,
J.
, and
Rutland
,
C.
,
2015
, “
PDF-Based Heterogeneous Multiscale Filtration Model
,”
Environ. Sci. Technol.
(epub)10.1021/acs.est.5b00329.
26.
Ogyu
,
K.
,
Ogasawara
,
T.
,
Sato
,
H.
,
Yamada
,
K.
, and
Ohno
,
K.
,
2013
, “
Development of High Porosity SiC-DPF Which is Compatible With High Robustness and Catalyst Coating Capability for SCR Coated DPF Application
,”
SAE
Paper No. 2013-01-084010.4271/2013-01-0840.
27.
Karin
,
P.
,
Cui
,
L.
,
Rubio
,
P.
,
Tsuruta
,
T.
, and
Hanamura
,
K.
,
2009
, “
Microscopic Visualization of PM Trapping and Regeneration in Micro-Structural Pores of a DPF Wall
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
661
669
10.4271/2009-01-1476.
28.
Dillon
,
H.
,
Stewart
,
M.
,
Maupin
,
G.
,
Gallant
,
T.
,
Li
,
C.
,
Mao
,
F.
,
Pyzik
,
A.
, and
Ramanathan
,
R.
,
2007
, “
Optimizing the Advanced Ceramic Material for Diesel Particulate Filter Applications
,”
SAE
Paper No. 2007-01-112410.4271/2007-01-1124.
29.
Wirojsakunchai
,
E.
,
Kolodziej
,
C.
,
Yapaulo
,
R.
, and
Foster
,
D.
,
2009
, “
Development of the Diesel Exhaust Filtration Analysis System (DEFA)
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
265
273
10.4271/2008-01-0486.
30.
Rakovec
,
N.
,
Viswanathan
,
S.
, and
Foster
,
D.
,
2011
, “
Micro-Scale Study of DPF Permeability as a Function of PM Loading
,”
SAE Int. J. Engines
,
4
(
1
), pp.
913
921
10.4271/2011-01-0815.
31.
Sakai
,
S.
,
Hageman
,
M.
, and
Rothamer
,
D.
,
2013
, “
Effect of Equivalence Ratio on the Particulate Emissions From a Spark-Ignited, Direct-Injected Gasoline Engine
,”
SAE
Paper No. 2013-01-156010.4271/2013-01-1560.
32.
Zhang
,
Y.
,
Ghandhi
,
J.
, and
Rothamer
,
D.
,
2014
, “
Comparison of Particulate Size Distributions From Advanced and Conventional Combustion—Part I: CDC, HCCI, and RCCI
,”
SAE Int. J. Engines
,
7
(
2
), pp.
820
834
.10.4271/2014-01-1296
You do not currently have access to this content.