A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.

References

References
1.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
192
215
.
2.
Luo
,
Z.
,
Som
,
S.
,
Sarathy
,
S. M.
,
Plomer
,
M.
,
Pitz
,
W. J.
,
Longman
,
D. E.
, and
Lu
,
T.
,
2014
, “
Development and Validation of an n-Dodecane Skeletal Mechanism for Spray Combustion Applications
,”
Combust. Theory Model.
,
18
(
2
), pp.
187
203
.
3.
Sarathy
,
S.
,
Westbrook
,
C.
,
Mehl
,
M.
,
Pitz
,
W.
,
Togbe
,
C.
,
Dagaut
,
P.
,
Wang
,
H.
,
Oehlschlaeger
,
M.
,
Niemann
,
U.
,
Seshadri
,
K.
,
Veloo
,
P. S.
,
Ji
,
C.
,
Egolfopoulos
,
F. N.
, and
Lu
,
T.
,
2011
, “
Comprehensive Chemical Kinetic Modeling of the Oxidation of 2-Methylalkanes From C7 to C20
,”
Combust. Flame
,
158
(
12
), pp.
2338
2357
.
4.
Mehl
,
M.
,
Pitz
,
W.
,
Westbrook
,
C.
, and
Sarathy
,
S.
,
2011
, “
Chemical Kinetic Modeling of Substituted Aromatics
,”
Fifth European Combustion Meeting (ECM2011)
, Cardiff University,
Wales, UK
, June 27-July 1.
5.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
,
2009
, “
A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
(
1
), pp.
181
199
.
6.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
7.
Brezinsky
,
K.
,
Litzinger
,
T.
, and
Glassman
,
I.
,
1984
, “
The High Temperature Oxidation of the Methyl Side Chain of Toluene
,”
Int. J. Chem. Kinet.
,
16
(
9
), pp.
1053
1074
.
8.
Emdee
,
J.
,
Brezinsky
,
K.
, and
Glassman
,
I.
,
1992
, “
A Kinetic Model for the Oxidation of Toluene Near 1200 K
,”
J. Phys. Chem.
,
96
(
5
), pp.
2151
2161
.
9.
Klotz
,
S. D.
,
Brezinsky
,
K.
, and
Glassman
,
I.
,
1998
, “
Modeling the Combustion of Toluene–Butane Blends
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
337
344
.
10.
Sivaramakrishnan
,
R.
,
Tranter
,
R.
, and
Brezinsky
,
K.
,
2004
, “
High-Pressure, High-Temperature Oxidation of Toluene
,”
Combust. Flame
,
139
(
4
), pp.
340
350
.
11.
Shen
,
H.-P. S.
, and
Oehlschlaeger
,
M. A.
,
2009
, “
The Autoignition of C8H10 Aromatics at Moderate Temperatures and Elevated Pressures
,”
Combust. Flame
,
156
(
5
), pp.
1053
1062
.
12.
Roubaud
,
A.
,
Lemaire
,
O.
,
Minetti
,
R.
, and
Sochet
,
L.
,
2000
, “
High Pressure Auto-Ignition and Oxidation Mechanisms of o-Xylene, o-Ethyltoluene, and n-Butylbenzene Between 600 and 900 K
,”
Combust. Flame
,
123
(
4
), pp.
561
571
.
13.
Mittal
,
G.
, and
Sung
,
C.-J.
,
2007
, “
A Rapid Compression Machine for Chemical Kinetics Studies at Elevated Pressures and Temperatures
,”
Combust. Sci. Technol.
,
179
(
3
), pp.
497
530
.
14.
Gaïl
,
S.
, and
Dagaut
,
P.
,
2005
, “
Experimental Kinetic Study of the Oxidation of p-Xylene in a JSR and Comprehensive Detailed Chemical Kinetic Modeling
,”
Combust. Flame
,
141
(
3
), pp.
281
297
.
15.
Johnston
,
R.
, and
Farrell
,
J.
,
2005
, “
Laminar Burning Velocities and Markstein Lengths of Aromatics at Elevated Temperature and Pressure
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
217
224
.
16.
Vasu
,
S. S.
,
Davidson
,
D. F.
,
Hong
,
Z.
,
Vasudevan
,
V.
, and
Hanson
,
R. K.
,
2009
, “
n-Dodecane Oxidation at High-Pressures: Measurements of Ignition Delay Times and OH Concentration Time-Histories
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
173
180
.
17.
Natelson
,
R. H.
,
Kurman
,
M. S.
,
Johnson
,
R. O.
,
Cernansky
,
N. P.
, and
Miller
,
D. L.
,
2011
, “
Preignition and Autoignition Chemistry of the Xylene Isomers
,”
Combust. Sci. Technol.
,
183
(
9
), pp.
897
914
.
18.
Lu
,
T.
,
Plomer
,
M.
,
Luo
,
Z.
,
Sarathy
,
S.
,
Pitz
,
W.
,
Som
,
S.
, and
Longman
,
D.
,
2011
, “
Three Dimensional Simulations of Diesel Sprays Using n-Dodecane as a Surrogate
,” Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Storrs, CT, Oct. 9-11.
19.
Liu
,
W.
,
Sivaramakrishnan
,
R.
,
Davis
,
M. J.
,
Som
,
S.
,
Longman
,
D.
, and
Lu
,
T.
,
2013
, “
Development of a Reduced Biodiesel Surrogate Model for Compression Ignition Engine Modeling
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
401
409
.
20.
Liu
,
W.
,
Law
,
C. K.
, and
Lu
,
T.
,
2009
, “
Multiple Criticality and Staged Ignition of Methane in the Counterflow
,”
Int. J. Chem. Kinet.
,
41
(
12
), pp.
764
776
.
21.
Liu
,
W.
,
Kelley
,
A.
, and
Law
,
C.
,
2010
, “
Flame Propagation and Counterflow Nonpremixed Ignition of Mixtures of Methane and Ethylene
,”
Combust. Flame
,
157
(
5
), pp.
1027
1036
.
22.
Liu
,
W.
,
Zhu
,
D.
,
Wu
,
N.
, and
Law
,
C. K.
,
2010
, “
Ignition of n-Heptane Pool by Heated Stagnating Oxidizing Flow
,”
Combust. Flame
,
157
(
2
), pp.
259
266
.
23.
Kee
,
R.
,
Rupley
,
F.
,
Miller
,
J.
,
Coltrin
,
M.
,
Grcar
,
J.
,
Meeks
,
E.
,
Moffat
,
H.
,
Lutz
,
A.
,
Dixon-Lewis
,
G.
, and
Smooke
,
M.
,
2000
, “
Chemkin Collection, Release 3.6,
” Reaction Design Inc., San Diego, CA.
24.
Kook
,
S.
, and
Pickett
,
L. M.
,
2012
, “
Liquid Length and Vapor Penetration of Conventional, Fischer–Tropsch, Coal-Derived, and Surrogate Fuel Sprays at High-Temperature and High-Pressure Ambient Conditions
,”
Fuel
,
93
, pp.
539
548
.
25.
Kook
,
S.
, and
Pickett
,
L. M.
,
2012
, “
Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions
,”
SAE Int. J. Fuels Lubr.
,
5
(
2
), pp.
647
664
.
26.
Pickett
,
L.
,
Bruneaux
,
G.
, and
Payri
,
R.
,
2014
, “
Engine Combustion Network
,” Sandia National Laboratories, Livermore, CA, http://www.ca.sandia.gov/ecn
27.
Pei
,
Y.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2013
, “
Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3039
3047
.
28.
Pei
,
Y.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2013
, “
A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-Heptane Jet Ignitions With the PDF Method
,”
Flow Turbul. Combust.
,
91
(
2
), pp.
249
280
.
29.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
Large Eddy Simulation of Fuel-Spray Under Non-Reacting IC Engine Conditions
,”
Atomization Sprays
,
23
(
10
), pp.
925
955
.
30.
Xue
,
Q.
,
Battistoni
,
M.
,
Som
,
S.
,
Quan
,
S.
,
Senecal
,
P.
,
Pomraning
,
E.
, and
Schmidt
,
D.
,
2014
, “
Flame Lift-Off on Direct-Injection Diesel Fuel Jets: Oxygen Concentration Effects
,”
SAE Int. J. Engines
,
7
(
2
), pp.
1061
1072
.
31.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Som
,
S.
,
2013
, “
An Investigation of Grid Convergence for Spray Simulations Using an LES Turbulence Model
,”
SAE
Paper No. 2013-01-1083.
32.
Bhattacharjee
,
S.
, and
Haworth
,
D. C.
,
2013
, “
Simulations of Transient n-Heptane and n-Dodecane Spray Flames Under Engine-Relevant Conditions Using a Transported PDF Method
,”
Combust. Flame
,
160
(
10
), pp.
2083
2102
.
33.
Pei
,
Y.
,
Hawkes
,
E. R.
,
Kook
,
S.
,
Goldin
,
G. M.
, and
Lu
,
T.
,
2015
, “
Modelling n-Dodecane Spray and Combustion With the Transported Probability Density Function Method
,”
Combust. Flame
,
162
(
5
), pp.
2006
2019
.
34.
Egüz
,
U.
,
Ayyapureddi
,
S.
,
Bekdemir
,
C.
,
Somers
,
B.
, and
de Goey
,
P.
,
2013
, “
Manifold Resolution Study of the FGM Method for an Igniting Diesel Spray
,”
Fuel
,
113
, pp.
228
238
.
35.
D'Errico
,
G.
,
Lucchini
,
T.
,
Contino
,
F.
,
Jangi
,
M.
, and
Bai
,
X.-S.
,
2013
, “
Comparison of Well-Mixed and Multiple Representative Interactive Flamelet Approaches for Diesel Spray Combustion Modelling
,”
Combust. Theory Model.
,
18
(
1
), pp.
65
88
.
36.
Abraham
,
J.
, and
Pickett
,
L. M.
,
2010
, “
Computed and Measured Fuel Vapor Distribution in a Diesel Spray
,”
Atomization Sprays
,
20
(
3
), pp.
241
250
.
37.
Bolla
,
M.
,
Wright
,
Y. M.
,
Boulouchos
,
K.
,
Borghesi
,
G.
, and
Mastorakos
,
E.
,
2013
, “
Soot Formation Modeling of n-Heptane Sprays Under Diesel Engine Conditions Using the Conditional Moment Closure Approach
,”
Combust. Sci. Technol.
,
185
(
5
), pp.
766
793
.
38.
Pei
,
Y.
,
2013
, “
Transported PDF Modelling of Spray Combustion at Practical Diesel Engine Conditions
,” Ph.D. thesis, The University of New South Wales, Sydney, Australia.
39.
Pei
,
Y.
,
Kundu
,
P.
,
Goldin
,
G. M.
, and
Som
,
S.
,
2015
, “
Large Eddy Simulation of a Reacting Spray Flame Under Diesel Engine Conditions
,”
SAE
Paper No. 2015-01-1844.
40.
Pei
,
Y.
,
Davis
,
M. J.
,
Pickett
,
L. M.
, and
Som
,
S.
, “
Engine Combustion Network (ECN): Global Sensitivity Analysis of Spray A for Different Combustion Vessels
,”
Combust. Flame
(in press).
41.
Kösters
,
A.
,
Karlsson
,
A.
,
Oevermann
,
M.
,
D'Errico
,
G.
, and
Lucchini
,
T.
,
2015
, “
RANS Predictions of Turbulent Diffusion Flames: Comparison of a Reactor and a Flamelet Combustion Model to the Well Stirred Approach
,”
Combust. Theory Model.
,
19
(
1
), pp.
81
106
.
42.
Hawkes
,
E.
,
Pei
,
Y.
,
Kook
,
S.
, and
Sibendu
,
S.
,
2013
, “
An Analysis of the Structure of an n-Dodecane Spray Flame Using PDF Modelling
,”
Australian Combustion Symposium
,
Perth, Australia
, Nov. 6–8, Paper No. F3-01.
43.
Payri
,
R.
,
Viera
,
J. P.
,
Pei
,
Y.
, and
Som
,
S.
, “
Experimental and Numerical Study of Lift-Off Length and Ignition Delay of a Two-Component Diesel Surrogate
,”
Fuel
(in press).
44.
Kundu
,
P.
,
Pei
,
Y.
,
Wang
,
M.
,
Raju
,
M.
, and
Som
,
S.
,
2014
, “
Evaluation of Turbulence Chemistry Interaction Under Diesel Engine Conditions With Multi-Flamelet RIF Model
,”
Atomization Sprays
,
24
(
9
), pp.
779
800
.
45.
Chishty
,
M.
,
Pei
,
Y.
,
Hawkes
,
E.
,
Bolla
,
M.
, and
Kook
,
S.
,
2014
, “
Investigation of the Flame Structure of Spray-A Using the Transported Probability Density Function
,”
19th Australasian Fluid Mechanics Conference
,
Melbourne, Australia
, Dec. 8-11, Paper No. 432.http://people.eng.unimelb.edu.au/imarusic/proceedings/19/432.pdf
46.
Pei
,
Y.
,
Hawkes
,
E.
, and
Kook
,
S.
,
2012
, “
Lagrangian–Lagrangian Modelling of an n-Heptane Jet at Diesel Engine Conditions
,”
18th Australasian Fluid Mechanics Conference
,
Launceston, Australia
, Dec. 3–7, pp. 645–648.
47.
Pei
,
Y.
,
Hawkes
,
E.
, and
Kook
,
S.
,
2011
, “
Modelling n-Heptane Spray and Combustion in Conventional and Low-Temperature Diesel Engine Conditions
,”
Australian Combustion Symposium
, Newcastle, NSW, Australia, Nov. 29-Dec. 1, pp.
90
93
.
48.
Convergent Science
,
2013
, “
CONVERGE 2.1.0 Theory Manual
,” Convergent Science Inc.,
Middleton
,
WI
.
49.
Reitz
,
R.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Paper No. 870598.
50.
Huber
,
M.
,
2013
, personal communication.
51.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
(
4
), pp.
309
337
.
52.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE
Paper No. 980131.
53.
Schmidt
,
D. P.
, and
Rutland
,
C.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
54.
Frossling
,
N.
,
1958
, “
Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow
,” National Advisory Committee for Aeronautics, Washington, DC,
NACA
Technical Memorandum 1432.http://naca.central.cranfield.ac.uk/reports/1958/naca-tm-1432.pdf
55.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Paper No. 930072.
56.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
57.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,”
SAE
Paper No. 760129.
58.
Nagle
,
J.
, and
Strickland-Constable
,
R.
,
1962
, “
Oxidation of Carbon Between 1000–2000 °C
,”
Proceedings of the Fifth Conference on Carbon
, University Park, PA, June 19-23, 1961,
Pergamon
,
Oxford, UK
, pp.
154
164
.
59.
Pitsch
,
H.
,
Chen
,
M.
, and
Peters
,
N.
,
1998
, “
Unsteady Flamelet Modeling of Turbulent Hydrogen–Air Diffusion Flames
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
1057
1064
.
60.
Hawkes
,
E.
,
Pei
,
Y.
,
Angelberger
,
C.
, and
Bardi
,
M.
,
2012
, “
Ignition and Lift-Off Length
,”
2nd International Workshop of the Engine Combustion Network (ECN2), Heidelberg, Germany, Sept. 7-8.
61.
Somers
,
L.
,
2014
, personal communication.
62.
Nikanjam
,
M.
,
1993
, “
Development of the First CARB Certified California Alternative Diesel Fuel
,”
SAE
Paper No. 930728.
63.
Glassman
,
I.
,
1989
, “
Soot Formation in Combustion Processes
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
295
311
.
64.
Dumitrescu
,
C. E.
,
Polonowski
,
C.
,
Fisher
,
B. T.
,
Cheng
,
A. S.
,
Lilik
,
G. K.
, and
Mueller
,
C. J.
,
2014
, “
An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine
,”
SAE
Paper No. 2014-01-1260.
You do not currently have access to this content.