As a crucial section of gas turbine maintenance decision-making process, to date, gas path fault diagnostic has gained a lot of attention. However, model-based diagnostic methods, like nonlinear gas path analysis (GPA) and genetic algorithms, need an accurate gas turbine model, and diagnostic methods without gas turbine model, like expert system, need a knowledge database. Both are difficult to gain. Thus, data-driven approach for gas path diagnosis, like artificial neural network, is increasingly attractive. Support vector machine (SVM), a novel computational learning method, seems to be a good choice for data-driven gas path fault diagnosis of gas turbine. In this paper, SVM is employed to diagnose a deteriorated gas turbine. The effect of sample number, kernel function, and monitoring parameters on diagnostic accuracy are studied, respectively. Additionally, the diagnostic result of SVM is compared to the result of artificial neural networks. The comparing result confirms that SVM has an obvious advantage over artificial neural networks method based on a small sample of data and can be employed to gas path fault diagnosis of gas turbine. In addition, SVM with radial basis kernel function is the best choice for gas turbine gas path fault diagnosis based on small sample.

References

1.
Liu
,
D. Y.
, and
Zhang
,
H. P.
,
2008
, “
Development and Electric Power Generation Technology of the Combustion Turbine
,”
Appl. Energy Technol.
,
121
(
1
), pp.
5
8
.10.3969/j.issn.1009-3230.2008.01.002
2.
Xia
,
D.
,
2008
, “
Gas Turbine Diagnostic Theory and Experiment Research Based on Thermal Parameters
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
3.
Niu
,
G.
,
Yang
,
B. S.
, and
Pecht
,
M.
,
2010
, “
Development of an Optimized Condition-Based Maintenance System by Data Fusion and Reliability-Centered Maintenance
,”
Reliab. Eng. Syst. Saf.
,
95
(
7
), pp.
786
796
.10.1016/j.ress.2010.02.016
4.
Kraft
,
J.
,
Sethi
,
V.
, and
Singh
,
R.
,
2014
, “
Optimization of Aero Gas Turbine Maintenance Using Advanced Simulation and Diagnostic Methods
,”
ASME J. Gas Turbines Power
,
136
(
11
), p.
111602
.10.1115/1.4027356
5.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
6.
Razak
,
A. M. Y.
, and
Carlyle
,
J. S.
,
2000
, “
An Advanced Model Based Health Monitoring System to Reduce Gas Turbine Ownership Cost
,”
ASME
Paper No. 2000-GT-0627.10.1115/2000-GT-0627
7.
Urban
,
L. A.
,
1975
, “
Parameter Selection for Multiple Fault Diagnostics of Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
97
(
2
), pp.
225
230
.10.1115/1.3445969
8.
Urban
,
L. A.
,
1969
,
Gas Turbine Engine Parameter Interrelationships
, 2nd ed.,
Hamilton Standard Division of United Aircraft Corp. (HSDUTC)
,
Windsor Locks, CT
.
9.
Vanini
,
Z. N. S.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2014
, “
Multiple-Model Sensor and Components Fault Diagnosis in Gas Turbine Engines Using Autoassociative Neural Networks
,”
ASME J. Gas Turbines Power
,
136
(
9
), p.
091603
.10.1115/1.4027215
10.
Li
,
Y. G.
,
2002
, “
Performance Analysis Based Gas Turbine Diagnostic: A Review
,”
Proc. Inst. Mech. Eng.
,
216
(
5
), pp.
363
377
.10.1243/095765002320877856
11.
Maimon
,
O.
, and
Rokach
,
L.
,
2010
,
Data Mining and Knowledge Discovery Handbook
, 2nd ed.,
Springer
,
New York
, pp.
231
248
.
12.
Saimurugan
,
M.
,
Ramachandran
,
K. I.
,
Sugumaran
,
V.
, and
Sakthivel
,
N. R.
,
2011
, “
Multi Component Fault Diagnosis of Rotational Mechanical System Based on Decision Tree and Support Vector Machine
,”
Expert Syst. Appl.
,
38
(
4
), pp.
3819
3826
.10.1016/j.eswa.2010.09.042
13.
Chen
,
J.
, and
Patton
,
R. J.
,
1998
,
Robust Model-Based Fault Diagnosis for Dynamic Systems
,
Kluwer Academic Publishers
,
Boston
.
14.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Network
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.10.1023/A:1022627411411
15.
Vapnik
,
V.
,
1995
,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
16.
Xie
,
F. F.
,
2006
, “
Support Vector Machine for Fault Diagnosis
,” Ph.D. thesis, Hunan University, Changsha, China.
17.
Deng
,
N. Y.
, and
Tian
,
Y. J.
,
2004
,
A New Method for Data Mining—Support Vector Machine
,
Science Press
,
Beijing
.
18.
Jack
,
L. B.
, and
Nandi
,
A. K.
,
2001
, “
Support Vector Machines for Detection and Characterization of Rolling Element Bearing Faults
,”
Proc. Inst. Mech. Eng., Part C
,
215
(
9
), pp.
1065
1071
.10.1177/095440620121500907
19.
Samanta
,
B.
,
Al-Balushi
,
K. R.
, and
Al-Araimi
,
S. A.
,
2003
, “
Artificial Neural Networks and Support Vector Machines With Genetic Algorithm for Bearing Fault Detection
,”
Eng. Appl. Artif. Intell.
,
16
(
7–8
), pp.
657
665
.10.1016/j.engappai.2003.09.006
20.
Lv
,
G. Y.
,
Chen
,
H. Z.
, and
Zhang
,
H. B.
,
2005
, “
Fault Diagnosis of Power Transformer Based on Multi-Layer SVM Classifier
,”
Electr. Power Syst. Res.
,
74
(
1
), pp.
9
15
.10.3969/j.issn.1003-8930.2005.01.005
21.
Cui
,
H. X.
,
Zhang
,
L. B.
, and
Kang
,
R. Y.
,
2009
, “
Research on Fault Diagnosis for Reciprocating Compressor Valve Using Information Entropy and SVM Method
,”
J. Loss Prev. Process Ind.
,
22
(
6
), pp.
864
967
.10.1016/j.jlp.2009.08.012
22.
Xu
,
Q.
,
Zhang
,
Y.
, and
Cui
,
Y. X.
,
2006
, “
Technical Characteristics of the Siemens Gas Turbine V94.3A
,”
Shanghai Electric Power
,
23
(
1
), pp.
3
6
.
You do not currently have access to this content.