Two-dimensional thermal profiles were experimentally measured downstream of a single row of film cooling holes on both an adiabatic and a matched Biot number model turbine vane. The measurements were taken as a comparison to computational simulations of the same model and flow conditions. Previously, adiabatic and overall effectiveness comparisons have been made between experimental and computational data. To improve computational models of the evolution of a film cooling jet as it propagates downstream, the thermal field above the vane, not just the footprint on the vane surface, must be analyzed. This study expands these data to include 2D thermal fields above the vane at 0, 5, and 10 hole diameters downstream of the film cooling holes. Four blowing ratios were tested, M = 0.28, 0.65, 1.11, and 2.41. In each case, the computational jets remained colder than the experimental jets because they did not diffuse into the mainstream as quickly. In addition, the computational results for the higher two blowing ratios exhibited the effects of the kidney vortex commonly studied in film cooling, but the experimental thermal fields were not dominated by this vortex. Finally, in comparing results above adiabatic and matched Biot number models, these thermal fields allow for an accurate analysis of whether or not the adiabatic wall temperature was a reasonable estimate of the driving temperature for heat transfer.

References

References
1.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2007
, “
CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded in Narrow and Wide Transverse Trenches
,”
ASME
Paper No. GT2007-28005.10.1115/GT2007-28005
2.
Takeishi
,
K.
,
Tsuyoshi
,
K.
,
Komiyama
,
M.
,
Oda
,
Y.
, and
Mori
,
S.
,
2011
, “
Study on the Thermal and Flow Fields of Shaped Film Cooling Holes
,”
Heat Trans. Res.
,
42
(
1
), pp.
83
100
10.1615/HeatTransRes.v42.i1.70.
3.
Leylek
,
J.
, and
Zerkle
,
R.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.10.1115/1.2929422
4.
Na
,
S.
, and
Shi
,
I.-P.
,
2006
, “
Increasing Adiabatic Effectiveness by Using an Upstream Ramp
,”
ASME
Paper No. GT2006-91163.10.1115/GT2006-91163
5.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998.10.1115/GT2004-53998
6.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002.10.1115/GT2005-69002
7.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane
,”
ASME J. Turbomach.
,
134
(
6
), p.
061003
.10.1115/1.4006280
8.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Experimental and Computational Measurements for an Internally Cooled Simulated Gas Turbine Vane With 90 Degree Rib Turbulators
,”
ASME J. Turbomach.
,
134
(
6
), p.
061005
.10.1115/1.4006282
9.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane
,”
ASME J. Turbomach.
,
134
(
6
), p.
061004
.10.1115/1.4006281
10.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
, and
Laskowski
,
G. M.
,
2011
, “
The Effects of Conjugate Heat Transfer on the Thermal Field Above a Film Cooled Wall
,”
ASME
Paper No. GT2011-46617.10.1115/GT2011-46617
11.
Mathew
,
S.
,
Ravelli
,
S.
, and
Bogard
,
D. G.
,
2013
, “
Evaluation of CFD Predictions Using Thermal Field Measurements on a Simulated Film Cooled Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
135
(
1
), p.
011021
10.1115/1.4006397.
12.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2012
, “
Evaluation of CFD Simulations of Film Cooling Performance on a Turbine Vane Including Conjugate Heat Transfer Effects
,”
ASME
Paper No. GT2012-69107. 10.1115/GT2012-69107
13.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
, and
Laskowski
,
G. M.
,
2013
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane
,”
ASME J. Turbomach.
,
135
(
5
), p.
051017
.10.1115/1.4023105
14.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA
CR 168015http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830020105.pdf.
15.
Pichon
,
Y.
,
2009
, “
Turbulence Field Measurements for the Large Windtunnel
,” Turbulence and Turbine Cooling Research Laboratory (TTCRL), The University of Texas at Austin, Austin, TX, Internal Report No. TTCRL 2009-1.
16.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.10.1115/1.3072494
17.
Special Metals
,
2004
, “
Inconel Alloy X-750
,” Special Metals Corp., New Hartford, NY, Product Specifications SMC-067, available at: http://www.specialmetals.com/documents/Inconel%20alloy%20X-750.pdf
18.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach
,
123
(
2
), pp.
231
237
.10.1115/1.1343457
You do not currently have access to this content.