The demand to reduce CO2 emissions favors the use of alternative hydrogen-rich fuels, which can stem from precombustion carbon capture or power-to-gas technologies. These fuels are characterized by a higher reactivity and reduced ignition delay time compared to natural gas. Therefore, current combustor designs need to be adapted to the new requirements. Numerical modeling greatly assists the further development of such systems. The present study aims to determine how far a sophisticated computational fluid dynamics (CFD) combustion method is able to predict auto-ignition at real engine conditions. Scale-resolving computations of auto-ignition were performed at elevated pressure (15 bar) and intermediate temperatures (>1000 K). The conditions are similar to those occurring in premixing ducts of reheat combustors. A nitrogen-diluted hydrogen jet is injected perpendicularly into a stream of hot vitiated air. The scale-adaptive simulation (SAS) method as proposed by Menter and coworkers has been applied. The chemistry is captured by direct inclusion of detailed kinetics. Subgrid fluctuations of temperature and species are considered by an assumed probability density function (PDF) approach. The results are compared with appropriate experimental reference data. The focus of the present work is set on the identification of the major sources of uncertainty in the simulation of auto-ignition. Despite the very challenging operating conditions, satisfactory agreements could be obtained within experimental uncertainties.

References

References
1.
Joos
,
F.
,
Brunner
,
P.
,
Schulte-Werning
,
B.
,
Syed
,
K.
, and
Ergolu
,
A.
,
1996
, “
Development of the Sequential Combustion System for the ABB GT24/GT26 Gas Turbine Family
,”
ASME
Paper No. 96-GT-315.10.1115/96-GT-315
2.
Poyyapakkam
,
M.
,
Wood
,
J.
,
Mayers
,
S.
,
Ciani
,
A.
,
Guethe
,
F.
, and
Syed
,
K.
,
2012
, “
Hydrogen Combustion Within a Gas Turbine Reheat Combustor
,”
ASME
Paper No. GT2012-69165.10.1115/GT2012-69165
3.
Jones
,
W.
, and
Navarro-Martinez
,
S.
,
2007
, “
Large Eddy Simulation of Autoignition With a Subgrid Probability Density Function Method
,”
Combust. Flame
,
150
(
3
), pp.
170
187
.10.1016/j.combustflame.2007.04.003
4.
Ihme
,
M.
, and
See
,
Y. C.
,
2011
, “
LES Flamelet Modeling of a Three-Stream Mild Combustor: Analysis of Flame Sensitivity to Scalar Inflow Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1309
1317
.10.1016/j.proci.2010.05.019
5.
Stanković
,
I.
,
Mastorakos
,
E.
, and
Merci
,
B.
,
2013
, “
LES-CMC Simulations of Different Auto-Ignition Regimes of Hydrogen in a Hot Turbulent Air Co-Flow
,”
Flow, Turbul. Combust.
,
90
(
3
), pp.
583
604
.10.1007/s10494-013-9443-2
6.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0% to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
213
220
.10.1016/j.proci.2008.07.034
7.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinet.
,
44
(
7
), pp.
444
474
.10.1002/kin.20603
8.
Fotache
,
C.
,
Kreutz
,
T.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
1995
, “
An Experimental Study of Ignition in Nonpremixed Counterflowing Hydrogen Versus Heated Air
,”
Combust. Sci. Technol.
,
109
(
1–6
), pp.
373
393
.10.1080/00102209508951910
9.
Kreutz
,
T.
, and
Law
,
C. K.
,
1996
, “
Ignition in Nonpremixed Counterflowing Hydrogen Versus Heated Air: Computational Study With Detailed Chemistry
,”
Combust. Flame
,
104
(
1
), pp.
157
175
.10.1016/0010-2180(95)00121-2
10.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
M.
,
2012
, “
Autoignition Limits of Hydrogen at Relevant Reheat Combustor Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041502
.10.1115/1.4004500
11.
Najm
,
H. B.
,
2011
, “
Uncertainty Quantification in Fluid Flow
,”
Turbulent Combustion Modeling
(Fluid Mechanics and Its Applications, Vol. 95),
T.
Echekki
, and
E.
Mastorakos
, eds.,
Springer
, Dordrecht, Chap. 16.
12.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
M.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,”
ASME
Paper No. GT2010-22722. 10.1115/GT2010-22722
13.
Kolla
,
H.
,
Grout
,
R. W.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2012
, “
Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow
,”
Combust. Flame
,
159
(
8
), pp.
2755
2766
.10.1016/j.combustflame.2012.01.012
14.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.10.2514/6.2005-1095
15.
Ivanova
,
E.
,
Noll
,
B.
,
Aigner
,
M.
, and
Syed
,
K.
,
2012
, “
Numerical Simulations of Turbulent Mixing and Autoignition of Hydrogen Fuel at Reheat Combustor Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041504
.10.1115/1.4004725
16.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modelling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.10.1002/kin.20036
17.
Gerlinger
,
P.
,
Möbus
,
H.
, and
Brüggemann
,
D.
,
2001
, “
An Implicit Multigrid Method for Turbulent Combustion
,”
J. Comput. Phys.
,
167
(
2
), pp.
247
276
.10.1006/jcph.2000.6671
18.
Gerlinger
,
P.
,
2002
, “
Investigation of an Assumed PDF Approach for Finite-Rate Chemistry
,”
AIAA
Paper No. 2002-0166.10.2514/6.2002-166
19.
Di Domenico
,
M.
,
2007
, “
Numerical Simulations of Soot Formation in Turbulent Flows
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.
20.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
21.
Konnov
,
A. A.
,
2008
, “
Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion
,”
Combust. Flame
,
152
(
4
), pp.
507
528
.10.1016/j.combustflame.2007.10.024
22.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
23.
Weydahl
,
T.
,
Poyyapakkam
,
M.
,
Seljeskog
,
M.
, and
Haugen
,
N. E. L.
,
2011
, “
Assessment of Existing H2/O2 Chemical Reaction Mechanisms at Reheat Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
12025
12034
.10.1016/j.ijhydene.2011.06.063
24.
Mueller
,
M. A.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
,
1999
, “
Flow Reactor Studies and Kinetic Modeling of the H2/O2/NOx and CO/H2O/O2/NOx Reactions
,”
Int. J. Chem. Kinet.
,
31
(
10
), pp.
705
724
.10.1002/(SICI)1097-4601(1999)31:10<705::AID-JCK4>3.0.CO;2-#
You do not currently have access to this content.