Low-temperature combustion (LTC) engine concepts such as homogeneous charge compression ignition (HCCI) offer the potential of improved efficiency and reduced emissions of nitrogen oxide (NOx) and particulates. However, engines can only successfully operate in HCCI mode for limited operating ranges that vary depending on the fuel composition. Unfortunately, traditional ratings such as octane number (ON) poorly predict the auto-ignition behavior of fuels in such engine modes, and metrics recently proposed for HCCI engines have areas of improvement when wide ranges of fuels are considered. In this study, a new index for ranking fuel suitability for LTC engines was defined, based on the fraction of potential fuel savings achieved in the federal test procedure (FTP-75) light-duty vehicle driving cycle. Driving cycle simulations were performed using a typical light-duty passenger vehicle, providing pairs of engine speed and load points. Separately, single-zone naturally aspirated HCCI engine simulations were performed for a variety of fuels in order to determine the operating envelopes for each. These results were combined to determine the varying improvement in fuel economy offered by fuels, forming the basis for a fuel performance index. Results showed that, in general, lower octane fuels performed better, resulting in higher LTC fuel index values; however, ON alone did not predict fuel performance.

References

References
1.
Zhao
,
F.
,
Asmus
,
T. W.
,
Assanis
,
D. N.
,
Dec
,
J. E.
,
Eng
,
J. A.
, and
Najt
,
P. M.
,
2003
, Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues,
SAE International
,
Warrendale, PA
.
2.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.10.1016/j.pecs.2009.05.001
3.
Onishi
,
S.
,
Jo
,
S.
,
Shoda
,
K.
,
Jo
,
P.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
,”
SAE
Technical Paper No. 790501.10.4271/790501
4.
Najt
,
P. M.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Technical Paper No. 830264.10.4271/830264
5.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
.10.4271/2009-01-2647
6.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
7.
Curran
,
S. J.
,
Hanson
,
R. M.
, and
Wagner
,
R. M.
,
2012
, “
Reactivity Controlled Compression Ignition Combustion on a Multi-Cylinder Light-Duty Diesel Engine
,”
Int. J. Engine Res.
,
13
(
3
), pp.
216
225
.10.1177/1468087412442324
8.
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2013
, “
Fuel Reactivity Effects on the Efficiency and Operational Window of Dual-Fuel Compression Ignition Engines
,”
Fuel
,
118
, pp.
163
175
.10.1016/j.fuel.2013.10.045
9.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion
,”
SAE
Technical Paper No. 790840.10.4271/790840
10.
Christensen
,
M.
,
Hultqvist
,
A.
, and
Johansson
,
B.
,
1999
, “
Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine With Variable Compression Ratio
,”
SAE
Technical Paper No. 1999-01-3679.10.4271/1999-01-3679
11.
Aroonsrisopon
,
T.
,
Sohm
,
V.
,
Werner
,
P.
,
Foster
,
D. E.
,
Morikawa
,
T.
, and
Iida
,
M.
,
2002
, “
An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics
,”
SAE
Technical Paper No. 2002-01-2830.10.4271/2002-01-2830
12.
Yelvington
,
P. E.
,
Rallo
,
M. B. I.
,
Liput
,
S.
,
Tester
,
J. W.
,
Green
,
W. H.
, and
Yang
,
J.
,
2004
, “
Prediction of Performance Maps for Homogeneous-Charge Compression-Ignition Engines
,”
Combust. Sci. Technol.
,
176
(
8
), pp.
1243
1282
.10.1080/00102200490457420
13.
Atkins
,
M. J.
, and
Koch
,
C. R.
,
2005
, “
The Effect of Fuel Octane and Dilutent on Homogeneous Charge Compression Ignition Combustion
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
5
), pp.
665
675
.10.1243/095440705X11202
14.
Kalghatgi
,
G. T.
,
2005
, “
Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines
,”
SAE
Technical Paper No. 2005-01-0239.10.4271/2005-01-0239
15.
Shibata
,
G.
, and
Urushihara
,
T.
,
2007
, “
Auto-Ignition Characteristics of Hydrocarbons and Development of HCCI Fuel Index
,”
SAE
Technical Paper No. 2007-01-0220.10.4271/2007-01-0220
16.
Ogura
,
T.
,
Angelos
,
J. P.
,
Green
,
W. H.
,
Cheng
,
W. K.
,
Kenney
,
T.
, and
Xu
,
Y.
,
2008
, “
Primary Reference Fuel Behavior in a HCCI Engine Near the Low-Load Limit
,”
SAE
Technical Paper No. 2008-01-1667.10.4271/2008-01-1667
17.
Liu
,
H.
,
Yao
,
M.
,
Zhang
,
B.
, and
Zheng
,
Z.
,
2009
, “
Influence of Fuel and Operating Conditions on Combustion Characteristics of a Homogeneous Charge Compression Ignition Engine
,”
Energy Fuels
,
23
(
3
), pp.
1422
1430
.10.1021/ef800950c
18.
Starck
,
L.
,
Lecointe
,
B.
,
Forti
,
L.
, and
Jeuland
,
N.
,
2010
, “
Impact of Fuel Characteristics on HCCI Combustion: Performances and Emissions
,”
Fuel
,
89
(
10
), pp.
3069
3077
.10.1016/j.fuel.2010.05.028
19.
Aldawood
,
A. M.
,
Mosbach
,
S.
,
Kraft
,
M.
, and
Amer
,
A. A.
,
2013
, “
Dual-Fuel Effects on HCCI Operating Range: Experiments With Primary Reference Fuels
,”
SAE
Technical Paper No. 2013-01-1673.10.4271/2013-01-1673
20.
Han
,
X.
,
Zheng
,
M.
, and
Wang
,
J.
,
2013
, “
Fuel Suitability for Low Temperature Combustion in Compression Ignition Engines
,”
Fuel
,
109
(C), pp.
336
349
.10.1016/j.fuel.2013.01.049
21.
Lacey
,
J. S.
,
Filipi
,
Z. S.
,
Sathasivam
,
S. R.
,
Cannella
,
W. J.
, and
Fuentes-Afflick
,
P. A.
,
2013
, “
HCCI Operability Limits: The Impact of Refinery Stream Gasoline Property Variation
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081505
.10.1115/1.4024260
22.
Rapp
, V
. H.
,
Cannella
,
W. J.
,
Chen
,
J.-Y.
, and
Dibble
,
R. W.
,
2013
, “
Predicting Fuel Performance for Future HCCI Engines
,”
Combust. Sci. Technol.
,
185
(
5
), pp.
735
748
.10.1080/00102202.2012.750309
23.
Zhao
,
H.
,
Li
,
J.
,
Ma
,
T.
, and
Ladommatos
,
N.
,
2002
, “
Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine With CAI Combustion
,”
SAE
Technical Paper No. 2002-01-0420.10.4271/2002-01-0420
24.
Curran
,
S. J.
,
Cho
,
K.
,
Briggs
,
T. E.
, and
Wagner
,
R. M.
,
2011
, “
Drive Cycle Efficiency and Emissions Estimates for Reactivity Controlled Compression Ignition in a Multi-Cylinder Light-Duty Diesel Engine
,”
ASME
Paper No. ICEF2011-60227.10.1115/ICEF2011-60227
25.
Kenney
,
T.
,
Gardner
,
T. P.
,
Low
,
S. S.
,
Eckstrom
,
J. C.
,
Wolf
,
L. R.
,
Korn
,
S. J.
, and
Szymkowicz
,
P. G.
,
2001
, “
Overall Results: Phase I Ad Hoc Diesel Fuel Test Program
,”
SAE
Technical Paper No. 2001-01-0151.10.4271/2001-01-0151
26.
Szymkowicz
,
P. G.
,
French
,
D. T.
, and
Crellin
,
C. C.
,
2001
, “
Effects of Advanced Fuels on the Particulate and NOx Emissions From an Optimized Light-Duty CIDI Engine
,”
SAE
Technical Paper No. 2001-01-0148.10.4271/2001-01-0148
27.
Gao
,
Z.
,
Daw
,
C. S.
,
Wagner
,
R. M.
,
Edwards
,
K. D.
, and
Smith
,
D. E.
,
2012
, “
Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
1
), pp.
31
51
.10.1177/0954407012459137
28.
Gao
,
Z.
,
Daw
,
C. S.
, and
Wagner
,
R. M.
,
2012
, “
Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control
,”
Spring Technical Meeting of the Central States Section of the Combustion Institute
, Dayton, OH, Apr. 22–24.
29.
Ortiz-Soto
,
E.
,
Assanis
,
D. N.
, and
Babajimopoulos
,
A.
,
2012
, “
A Comprehensive Engine to Drive-Cycle Modelling Framework for the Fuel Economy Assessment of Advanced Engine and Combustion Technologies
,”
Int. J. Engine Res.
,
13
(
3
), pp.
287
304
.10.1177/1468087411411615
30.
Ahn
,
K.
,
Whitefoot
,
J.
,
Babajimopoulos
,
A.
,
Ortiz-Soto
,
E.
, and
Papalambros
,
P. Y.
,
2012
, “
Homogeneous Charge Compression Ignition Technology Implemented in a Hybrid Electric Vehicle: System Optimal Design and Benefit Analysis for a Power-Split Architecture
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
1
), pp.
87
98
.10.1177/0954407012453237
31.
EPA Office of Transportation and Air Quality
,
2013
, “
Dynamometer Drive Schedules
,” Environmental Protection Agency, Washington, DC, http://www.epa.gov/nvfel/testing/dynamometer.htm
32.
Wipke
,
K. B.
,
Cuddy
,
M. R.
, and
Burch
,
S. D.
,
1999
, “
ADVISOR 2.1: A User-Friendly Advanced Powertrain Simulation Using a Combined Backward/Forward Approach
,”
IEEE Trans. Veh. Technol.
,
48
(
6
), pp.
1751
1761
.10.1109/25.806767
33.
Markel
,
T.
,
Brooker
,
A.
,
Hendricks
,
T.
, and
Johnson
,
V.
,
2002
, “
ADVISOR: A Systems Analysis Tool for Advanced Vehicle Modeling
,”
J. Power Sources
,
110
(
2
), pp.
255
266
.10.1016/S0378-7753(02)00189-1
34.
Gao
,
D. W.
,
Mi
,
C.
, and
Emadi
,
A.
,
2007
, “
Modeling and Simulation of Electric and Hybrid Vehicles
,”
Proc. IEEE
,
95
(
4
), pp.
729
745
.10.1109/JPROC.2006.890127
35.
Reilly
,
D.
,
Andersen
,
R.
,
Casparian
,
R.
, and
Dugdale
,
P.
,
1991
, “
Saturn DOHC and SOHC Four Cylinder Engines
,”
SAE
Technical Paper No. 910676.10.4271/910676
36.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
37.
Reaction Design
,
2013
, CHEMKIN 10131, Reaction Design, San Diego, CA.
38.
Aldawood
,
A.
,
Mosbach
,
S.
, and
Kraft
,
M.
,
2012
, “
HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations
,”
SAE
Technical Paper No. 2012-01-1117.10.4271/2012-01-1117
39.
Gao
,
Z.
,
Conklin
,
J. C.
,
Daw
,
C. S.
, and
Chakravarthy
, V
. K.
,
2010
, “
A Proposed Methodology for Estimating Transient Engine-Out Temperature and Emissions From Steady-State Maps
,”
Int. J. Engine Res.
,
11
(
2
), pp.
137
151
.10.1243/14680874JER05609
40.
Nüesch
,
S.
,
Hellström
,
E.
,
Jiang
,
L.
, and
Stefanopoulou
,
A.
,
2013
, “
Influence of Transitions Between SI and HCCI Combustion on Driving Cycle Fuel Consumption
,”
European Control Conference (ECC)
, Zurich, July 17–19, pp.
1976
1981
.
41.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
,
Pitz
,
W. J.
,
Dibble
,
R. W.
, and
Christensen
,
M.
,
2000
, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,”
SAE
Technical Paper No. 2000-01-0327.10.4271/2000-01-0327
42.
Fiveland
,
S. B.
, and
Assanis
,
D. N.
,
2001
, “
Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects
,”
SAE
Technical Paper No. 2001-01-1028.10.4271/2001-01-1028
43.
Yelvington
,
P.
, and
Green
,
W.
,
2003
, “
Prediction of the Knock Limit and Viable Operating Range for a Homogeneous-Charge Compression-Ignition (HCCI) Engine
,”
SAE
Technical Paper No. 2003-01-1092.10.4271/2003-01-1092
44.
Chin
,
G.
, and
Chen
,
J.-Y.
,
2011
, “
Modeling of Emissions From HCCI Engines Using a Consistent 3-Zone Model With Applications to Validation of Reduced Chemistry
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3073
3079
.10.1016/j.proci.2010.06.079
45.
Kodavasal
,
J.
,
McNenly
,
M. J.
,
Babajimopoulos
,
A.
,
Aceves
,
S. M.
,
Assanis
,
D. N.
,
Havstad
,
M. A.
, and
Flowers
,
D. L.
,
2013
, “
An Accelerated Multi-Zone Model for Engine Cycle Simulation of Homogeneous Charge Compression Ignition Combustion
,”
Int. J. Engine Res.
,
14
(
5
), pp.
416
433
.10.1177/1468087413482480
46.
Tsurushima
,
T.
,
2009
, “
A New Skeletal PRF Kinetic Model for HCCI Combustion
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2835
2841
.10.1016/j.proci.2008.06.018
47.
Curran
,
H. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Callahan
,
C. V.
, and
Dryer
,
F. L.
,
1998
, “
Oxidation of Automotive Primary Reference Fuels at Elevated Pressures
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
379
387
.10.1016/S0082-0784(98)80426-8
48.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.10.1016/S0010-2180(01)00373-X
You do not currently have access to this content.