Condensation of gaseous fuel is investigated in a low temperature combustion (LTC) engine fueled with double direct-injected diesel and premixed gasoline at two load conditions. Possible condensation is examined by considering real gas effects with the Peng–Robinson (PR) equation of state (EOS) and assuming thermodynamic equilibrium of the two fuels. The simulations show that three representative condensation events are observed. The first two condensations are found in the spray some time after the two direct injections (DI), when the evaporative cooling reduces the local temperature until phase separation occurs. The third condensation event occurs during the late stages of the expansion stroke, during which the continuous expansion sends the local fluid into the two-phase region again. Condensation was not found to greatly affect global parameters, such as the average cylinder pressure and temperature mainly because, before the main combustion event, the condensed phase was converted back to the vapor phase due to compression and/or first stage heat release. However, condensed fuel is shown to affect the emission predictions, including engine-out particulate matter (PM) and unburned hydrocarbons (UHCs). Specifically, it was shown that the condensed fuel comprised more than 95% of the PM in the low load condition, while its contribution was significantly reduced at the high load condition due to higher temperature and pressure conditions.

References

References
1.
,
X.-C.
,
Chen
,
W.
, and
Huang
,
Z.
,
2005
, “
A Fundamental Study on the Control of the HCCI Combustion and Emissions by Fuel Design Concept Combined With Controllable EGR. Part 1. The Basic Characteristics of HCCI Combustion
,”
Fuel
,
84
(
9
), pp.
1074
1083
.10.1016/j.fuel.2004.12.014
2.
Zhao
,
H.
,
2007
,
HCCI and CAI Engines for the Automotive Industry
, Elsevier, Amsterdam, pp.
1
524
.
3.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2007
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
4.
Dempsey
,
A. B.
,
Walker
,
N. R.
,
Gingrich
,
E.
, and
Reitz
,
R. D.
,
2013
, “
Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines With a Focus on Controllability
,”
Combust. Sci. Technol.
,
186
(
2
), pp.
210
241
.10.1080/00102202.2013.858137
5.
Prikhodko
,
V. Y.
,
Curran
,
S. J.
,
Barone
,
T. L.
,
Lewis
,
S. A.
,
Storey
,
J. M.
,
Cho
,
K.
,
Wagner
,
R. M.
, and
Parks
,
J. E.
,
2010
, “
Emission Characteristics of a Diesel Engine Operating With In-Cylinder Gasoline and Diesel Fuel Blending
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
946
955
.10.4271/2010-01-2266
6.
Prikhodko
,
V. Y.
,
Curran
,
S. J.
,
Barone
,
T. L.
,
Lewis
,
S. A.
,
Storey
,
J. M.
,
Cho
,
K.
,
Wagner
,
R. M.
, and
Parks
,
J. E.
,
2011
, “
Diesel Oxidation Catalyst Control of Hydrocarbon Aerosols From Reactivity Controlled Compression Ignition
,”
ASME
Paper No. 2011-64147.10.1115/2011-64147
7.
Dempsey
,
A.
,
Curran
,
S.
,
Storey
,
J.
,
Eibl
,
M.
,
Pihl
,
J.
,
Prikhodko
,
V.
,
Wagner
,
R.
, and
Parks
,
J.
,
2014
, “
Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine
,”
SAE
Paper No. 2014-01-1596.10.4271/2014-01-1596
8.
Callen
,
H. B.
,
1985
,
Thermodynamics and an Introduction to Thermostatics
,
Wiley
,
New York
.
9.
Qiu
,
L.
,
Wang
,
Y.
,
Jiao
,
Q.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2014
, “
Development of a Thermodynamically Consistent, Robust and Efficient Phase Equilibrium Solver and Its Validations
,”
Fuel
,
115
, pp.
1
16
.10.1016/j.fuel.2013.06.039
10.
Michelsen
,
M. L.
,
1982
, “
The Isothermal Flash Problem 1. Stability
,”
Fluid Phase Equilib.
,
9
(
1
), pp.
1
19
.10.1016/0378-3812(82)85001-2
11.
Li
,
Z. D.
, and
Firoozabadi
,
A.
,
2012
, “
General Strategy for Stability Testing and Phase-Split Calculation in Two and Three Phases
,”
SPE J.
,
17
(4), pp.
1096
1107
.10.2118/129844-PA
12.
Qiu
,
L.
,
Wang
,
Y.
,
Jiao
,
Q.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2013
, “
Simulating Condensation in a Supercritical Gas Jet
,”
ILASS Americas, 25th Annual Conference on Liquid Atomization and Spray Systems
,
Pittsburgh, PA
, May 5–8.
13.
Qiu
,
L.
, and
Reitz
,
R. D.
,
2014
, “
Condensation Processes in a Motoring Engine
,”
J. Supercrit. Fluids
,
90
, pp.
84
100
.10.1016/j.supflu.2014.03.013
14.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
15.
Zhu
,
G. S.
, and
Aggarwal
,
S. K.
,
2000
, “
Transient Supercritical Droplet Evaporation With Emphasis on the Effects of Equation of State
,”
Int J. Heat Mass Transfer
,
43
(
7
), pp.
1157
1171
.10.1016/S0017-9310(99)00197-0
16.
Hsieh
,
K. C.
,
Shuen
,
J. S.
, and
Yang
,
V.
,
1991
, “
Droplet Vaporization in High-Pressure Environments. 1. Near Critical Conditions
,”
Combust. Sci. Technol.
,
76
(
1–3
), pp.
111
132
.10.1080/00102209108951705
17.
Curtis
,
E. W.
, and
Farrell
,
P. V.
,
1992
, “
A Numerical Study of High-Pressure Droplet Vaporization
,”
Combust. Flame
,
90
(
2
), pp.
85
102
.10.1016/0010-2180(92)90111-2
18.
Firoozabadi
,
A.
,
1999
,
Thermodynamics of Hydrocarbon Reservoirs
,
McGraw-Hill
,
New York
.
19.
Sandler
,
S. I.
,
1999
,
Chemical and Engineering Thermodynamics
,
Wiley
,
New York
.
20.
Rowley
,
R. L.
,
Wilding
,
W. V.
,
Oscarson
,
J. L.
,
Giles
,
N.
,
Rowley
,
R. J.
,
Daubert
,
T. E.
, and
Danner
,
R. P.
,
2001
,
DIPPR Data Compilation of Pure Compound Properties
, Brigham Young University Press, Provo, Utah.
21.
Amsden
,
A. A.
,
1999
, “
kiva-3V, Release 2, Improvements to KIVA-3V
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report LA-UR-99-915.
22.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Spray
,
9
(6), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
23.
Patterson
,
M.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE
Paper No. 980131.10.4271/980131
24.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
25.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ɛ Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
26.
Reitz
,
R. D.
, and
Munnannur
,
A.
,
2009
, “
Comprehensive Collision Model for Multidimensional Engine Spray Computations
,”
Atomization Spray
,
19
(7), pp.
597
619
.10.1615/AtomizSpr.v19.i7.10
27.
Abani
,
N.
,
Munnannur
,
A.
, and
Reitz
,
R. D.
,
2008
, “
Reduction of Numerical Parameter Dependencies in Diesel Spray Models
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032809
.10.1115/1.2830867
28.
Wang
,
H.
,
Yao
,
M.
, and
Reitz
,
R. D.
,
2013
, “
Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations
,”
Energy Fuels
,
27
(
12
), pp.
7843
7853
.10.1021/ef401992e
29.
Kong
,
S. C.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2007
, “
Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
245
251
.10.1115/1.2181596
30.
Hanson
,
R. M.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,”
SAE
Technical Paper No. 2009-01-1442.10.4271/2009-01-1442
31.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
700
716
.10.4271/2010-01-0864
32.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2009
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
.10.4271/2009-01-2647
33.
Hanson
,
R. M.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load
,”
SAE Int. J. Engines
,
4
(
1
), pp.
394
411
.10.4271/2011-01-0361
34.
Splitter
,
D.
,
Kokjohn
,
S.
,
Rein
,
K.
,
Hanson
,
R.
,
Sanders
,
S.
, and
Reitz
,
R. D.
,
2010
, “
An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion
,”
SAE Int. J. Engines
,
3
(
1
), pp.
142
162
.10.4271/2010-01-0345
35.
Patterson
,
M.
,
Kong
,
S.-C.
,
Hampson
,
G.
, and
Reitz
,
R. D.
,
1994
, “
Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions
,”
SAE
Paper No. 940523.10.4271/940523
36.
Tao
,
F.
,
Liu
,
Y.
,
RempelEwert
,
B. H.
,
Foster
,
D. E.
,
Reitz
,
R. D.
,
Choi
,
D.
, and
Miles
,
P. C.
,
2005
, “
Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model
,”
SAE
Paper No. 2005-01-0121.10.4271/2005-01-0121
37.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
,
2010
, “
Development of a Practical Soot Modeling Approach and Its Application to Low-Temperature Diesel Combustion
,”
Combust. Sci. Technol.
,
182
(
8
), pp.
1050
1082
.10.1080/00102200903548124
38.
Wang
,
H.
,
Reitz
,
R. D.
,
Yao
,
M.
,
Yang
,
B.
,
Jiao
,
Q.
, and
Qiu
,
L.
,
2013
, “
Development of an n-Heptane-n-Butanol-PAH Mechanism and Its Application for Combustion and Soot Prediction
,”
Combust. Flame
,
160
(
3
), pp.
504
519
.10.1016/j.combustflame.2012.11.017
39.
Wang
,
H.
,
Jiao
,
Q.
,
Yao
,
M.
,
Yang
,
B.
,
Qiu
,
L.
, and
Reitz
,
R. D.
,
2013
, “
Development of an n-Heptane/Toluene/Polyaromatic Hydrocarbon Mechanism and Its Application for Combustion and Soot Prediction
,”
Int. J. Engine Res.
,
14
(
5
), pp.
434
451
.10.1177/1468087412471056
You do not currently have access to this content.