Homogeneous charge compression ignition (HCCI) combustion in diesel engines can provide cleaner operation with ultralow NOx and soot emissions. While HCCI combustion has generated significant attention in the last decade, however, till date, it has seen very limited application in production diesel engines. HCCI combustion is typically characterized by earlier than top-dead-center (pre-TDC) phasing, very high-pressure rise rates, short combustion durations, and minimal control over the timing of the combustion event. To offset the high reactivity of the diesel fuel, large amounts of exhaust gas recirculation (EGR) (30–60%) are usually applied to postpone the initiation of combustion, shift the combustion toward TDC, and alleviate to some extent, the high-pressure rise rates and the reduced energy efficiency. In this work, a detailed analysis of HCCI combustion has been carried out on a high-compression ratio (CR), single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling, and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability, emissions, and performance metrics. The empirical investigation is extended to assess the suitability of common alternate fuels (n-butanol, gasoline, and ethanol) for HCCI combustion. On the basis of the analysis, the significant challenges affecting the real-world application of HCCI are identified, their effects on the engine performance quantified, and possible solutions to overcome these challenges explored through both theoretical and empirical investigations. This paper intends to provide a comprehensive summary of the implementation issues affecting HCCI combustion in diesel engines.

References

References
1.
Dec
,
J. E.
,
2009
, “
Advanced Compression–Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.10.1016/j.proci.2008.08.008
2.
Asad
,
U.
,
Divekar
,
P.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
Low Temperature Combustion Strategies for Compression Ignition Engines: Operability Limits and Challenges
,”
SAE
Technical Paper No. 2013-01-0283.10.4271/2013-01-0283
3.
Asad
,
U.
,
Zheng
,
M.
,
Han
,
X.
,
Reader
,
G. T.
, and
Wang
,
M.
,
2008
, “
Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines
,”
SAE Int. J. Eng.
,
1
(
1
), pp.
1220
1233
.10.4271/2008-01-2472
4.
Maiboom
,
A.
,
Tauzia
,
X.
, and
Hétet
,
J.-F.
,
2008
, “
Experimental Study of Various Effects of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of an Automotive Direct Injection Diesel Engine
,”
Energy
,
33
(
1
), pp.
22
34
.10.1016/j.energy.2007.08.010
5.
Kodama
,
Y.
,
Nishizawa
,
I.
,
Sugihara
,
T.
,
Sato
,
N.
,
Iijima
,
T.
, and
Yoshida
,
T.
,
2007
, “
Full-Load HCCI Operation With Variable Valve Actuation System in a Heavy-Duty Diesel Engine
,”
SAE
Technical Paper No. 2007-01-0215.10.4271/2007-01-0215
6.
Zhao
,
H.
,
Xie
,
H.
, and
Peng
,
Z.
,
2005
, “
Effect of Recycled Burned Gases on Homogeneous Charge Compression Ignition Combustion
,”
Combust. Sci. Technol.
,
177
(
10
), pp.
1863
1882
.10.1080/00102200590970258
7.
Shi
,
L.
,
Cui
,
Y.
,
Deng
,
K.
,
Peng
,
H.
, and
Chen
,
Y.
,
2006
, “
Study of Low Emission Homogeneous Charge Compression Ignition (HCCI) Engine Using Combined Internal and External Exhaust Gas Recirculation (EGR)
,”
Energy
,
31
(
14
), pp.
2665
2676
.10.1016/j.energy.2005.12.005
8.
Asad
,
U.
, and
Zheng
,
M.
,
2009
, “
Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion
,”
SAE Int. J. Eng.
,
2
(
1
), pp.
1085
1097
.10.4271/2009-01-1126
9.
Kimura
,
S.
,
Ogawa
,
H.
,
Matsui
,
Y.
, and
Enomoto
,
Y.
,
2002
, “
An Experimental Analysis of Low-Temperature and Premixed Combustion for Simultaneous Reduction of NOx and Particulate Emissions in Direct Injection Diesel Engines
,”
Int. J. Eng. Res.
,
3
(
4
), pp.
249
259
.10.1243/146808702762230932
10.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
,
Sasaki
,
S.
, and
Dean
,
A.
,
2001
, “
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
,”
SAE
Technical Paper No. 2001-01-0655.10.4271/2001-01-0655
11.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Eng. Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
12.
Lu
,
X.
,
Han
,
D.
, and
Huang
,
H.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression–Ignition Combustion Modes
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
741
783
.10.1016/j.pecs.2011.03.003
13.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Reader
,
G. T.
,
Wang
,
M.
, and
Zheng
,
M.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
.10.1115/1.4024027
14.
Kaddatz
,
J.
,
Andrie
,
M.
,
Reitz
,
R.
, and
Kokjohn
,
S.
,
2012
, “
Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver
,”
SAE
Paper No. 2012-01-1110.10.4271/2012-01-1110
15.
Asad
,
U.
,
Kumar
,
R.
,
Han
,
X.
, and
Zheng
,
M.
,
2011
, “
Precise Instrumentation of a Diesel Single Cylinder Research Engine
,”
J. Meas.
,
44
(
7
), pp.
1261
1278
.10.1016/j.measurement.2011.03.028
16.
Asad
,
U.
, and
Zheng
,
M.
,
2014
, “
Diesel Pressure Departure Ratio Algorithm for Combustion Feedback and Control
,”
Int. J. Engine Res.
,
15
(
1
), pp.
101
111
.10.1177/1468087412461268
17.
Asad
,
U.
,
Tjong
,
J.
, and
Zheng
,
M.
,
2014
, “
Exhaust Gas Recirculation—Zero-Dimensional Modelling and Characterization for Transient Diesel Combustion Control
,”
Energy Convers. Manage.
,
86
, pp.
309
324
.10.1016/j.enconman.2014.05.035
18.
Asad
,
U.
, and
Zheng
,
M.
,
2011
, “
Tightened Intake Oxygen Control for Improving Diesel Low Temperature Combustion
,”
Proc. Inst. Mech. Eng., Part D
,
225
(
4
), pp.
513
530
.10.1177/2041299110393211
19.
Hiroyasu
,
H.
, and
Arai
,
M.
,
1990
, “
Structure of Fuel Sprays in Diesel Engines
,”
SAE Trans.
,
99
(
2
), pp.
1050
1061
.10.4271/900475
20.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE
Technical Paper No. 960034.10.4271/960034
21.
Reader
,
G.
,
Asad
,
U.
, and
Zheng
,
M.
,
2013
, “
Energy Efficiency of Phasing of HCCI Cycles
,”
Int. J. Energy Res.
,
37
(
3
), pp.
200
210
.10.1002/er.1900
22.
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Chen
,
X.
, and
Zheng
,
M.
,
2014
, “
Study of Cylinder Charge Control for Enabling Low Temperature Combustion in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091503
.10.1115/1.4026929
23.
Asad
,
U.
,
Kumar
,
R.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2015
, “
Ethanol-Fuelled Low Temperature Combustion: A Pathway to Clean and Efficient Diesel Engine Cycles
,”
Appl. Energy
(in press).10.1016/j.apenergy.2015.01.057
You do not currently have access to this content.