The cumulative global capacity of organic Rankine cycle (ORC) power systems for the conversion of renewable and waste thermal energy is undergoing a rapid growth and is estimated to be approx. 2000 MWe considering only installations that went into operation after 1995. The potential for the conversion of the thermal power coming from liquid-dominated geothermal reservoirs, waste heat from primary engines or industrial processes, biomass combustion, and concentrated solar radiation into electricity is arguably enormous. ORC technology is possibly the most flexible in terms of capacity and temperature level and is currently often the only applicable technology for the conversion of external thermal energy sources. In addition, ORC power systems are suitable for the cogeneration of heating and/or cooling, another advantage in the framework of distributed power generation. Related research and development is therefore very lively. These considerations motivated the effort documented in this article, aimed at providing consistent information about the evolution, state, and future of this power conversion technology. First, basic theoretical elements on the thermodynamic cycle, working fluid, and design aspects are illustrated, together with an evaluation of the advantages and disadvantages in comparison to competing technologies. An overview of the long history of the development of ORC power systems follows, in order to place the more recent evolution into perspective. Then, a compendium of the many aspects of the state of the art is illustrated: the solutions currently adopted in commercial plants and the main-stream applications, including information about exemplary installations. A classification and terminology for ORC power plants are proposed. An outlook on the many research and development activities is provided, whereby information on new high-impact applications, such as automotive heat recovery is included. Possible directions of future developments are highlighted, ranging from efforts targeting volume-produced stationary and mobile mini-ORC systems with a power output of few kWe, up to large MWe base-load ORC plants.

References

References
1.
Tabor
,
H.
, and
Bronicki
,
L.
,
1964
, “
Establishing Criteria for Fluids for Small Vapor Turbines
,”
SAE
Technical Paper No. 640823.10.4271/640823
2.
Angelino
,
G.
,
Gaia
,
M.
, and
Macchi
,
E.
,
1984
, “
A Review of Italian Activity in the Field of Organic Rankine Cycles
,”
International VDI
ORC HP Technology Working Fluids Problems, Zurich, Sept. 10–12, pp.
465
482
.
3.
Adam
,
A. W.
,
1995
, “
Organic Rankine Engines
,”
Encyclopedia of Energy Technology and the Environment
,
Wiley
,
New York
, pp.
2157
2161
.
4.
Macchi
,
E.
,
1977
, “
Design Criteria for Turbines Operating With Fluids Having a Low Speed of Sound
,”
Closed Cycle Gas Turbines
(VKI Lecture Series 100),
von Karman Institute for Fluid Dynamics
,
Rhode-Saint-Genèse, Belgium
.
5.
Verneau
,
A.
,
1987
, “
Supersonic Turbines for Organic Fluid Rankine Cycles From 3 to 1300 kW
,”
Small High Pressure Ratio Turbines
(VKI Lecture Series 1987–2007),
von Karman Institute for Fluid Dynamics
, Rhode-Saint-Genèse, Belgium.
6.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.10.1016/j.rser.2013.01.028
7.
Invernizzi
,
C. M.
,
2013
,
Closed Power Cycles—Thermodynamic Fundamentals and Applications (Lecture Notes in Engineering
, Vol.
11
),
Springer-Verlag
,
London
.
8.
Di Nanno
,
L.
,
Di Bella
,
F.
, and
Koplow
,
M.
,
1983
, “
An RC-1 Organic Rankine Bottoming Cycle for an Adiabatic Diesel Engine
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. DOE/NASA/0302-1.
9.
Fergason
,
S.
,
Guardone
,
A.
, and
Argrow
,
B.
,
2003
, “
Construction and Validation of a Dense Gas Shock Tube
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
326
333
.10.2514/2.6789
10.
Bombarda
,
P.
,
Invernizzi
,
C.
, and
Gaia
,
M.
,
2013
, “
Performance Analysis of OTEC Plants With Multilevel Organic Rankine Cycle and Solar Hybridization
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042302
.10.1115/1.4007729
11.
Gaia
,
M.
,
2011
, “
30 Years of ORC Development
,”
1st International Seminar on ORC Power Systems
(
ORC2011
), Delft, The Netherlands, Sept. 22–23.http://orc2011.fyper.com/uploads/File/presentations3/30%20Years%20of%20ORC%20development.pdf
12.
Kalina
,
I. A.
,
1984
, “
Combined Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
737
742
.10.1115/1.3239632
13.
Bombarda
,
P.
,
Invernizzi
,
C.
, and
Pietra
,
C.
,
2010
, “
Heat Recovery From Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycles
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
212
219
.10.1016/j.applthermaleng.2009.08.006
14.
Stone
,
K.
,
Leingang
,
E.
,
Liden
,
B.
,
Ellis
,
E.
,
Sattar
,
T.
,
Mancini
,
T.
, and
Nelving
,
H.
,
2001
, “
SES/Boeing Dish Stirling System Operation
,”
ASME International Solar Energy Conference
, Washington, DC, Apr. 21–25, pp.
105
110
.
15.
Reinalter
,
W.
,
Ulmer
,
S.
,
Heller
,
P.
,
Rauch
,
T.
,
Gineste
,
J. M.
,
Ferriere
,
A.
, and
Nepveu
,
F.
,
2007
, “
Detailed Performance Analysis of a 10 kW Dish Stirling System
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
011013
.10.1115/1.2807191
16.
Carlsen
,
H.
, and
Fentz
,
J.
,
2004
, “
Development of a 9 kW Stirling Engine
,”
Proceedings of the International Gas Research Conference
(
IGRC
),
Vancouver
, Canada, Nov. 1–4.
17.
Conroy
,
G.
,
Duffy
,
A.
, and
Ayompe
,
L.
,
2013
, “
Validated Dynamic Energy Model for a Stirling Engine μ-CHP Unit Using Field Trial Data From a Domestic Dwelling
,”
Energy Build.
,
62
, pp.
18
26
.10.1016/j.enbuild.2013.01.022
18.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2000
, “
Real Gas Effects in Stirling Engines
,”
35th Intersociety Energy Conversion Engineering Conference & Exhibit (IECEC)
,
Las Vegas, NV
, July 24–28, pp.
69
75
.
19.
Power Magazine,
2008
, “
Global Monitor: Sandia, Stirling Energy Systems Set New World Record
,”
Power
,
152
(
4
), available at: http://www.powermag.com/global-monitor-april-2008/?pagenum=2
20.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Gas Turbines Power
,
90
(
3
), pp.
287
295
.10.1115/1.3609190
21.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.http://www.ans.org/pubs/journals/nt/a_3733
22.
Iverson
,
B.
,
Conboy
,
T.
,
Pasch
,
J.
, and
Kruizenga
,
A.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.10.1016/j.apenergy.2013.06.020
23.
Bram
,
S.
,
De Ruyck
,
J.
, and
Novak-Zdravkovic
,
A.
,
2005
, “
Status of External Firing of Biomass in Gas Turbines
,”
Proc. IMechE Part A
,
219
(
2
), pp.
137
145
.10.1243/095765005X6764
24.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.10.1016/j.solener.2005.04.020
25.
Pehnt
,
M.
,
Praetorius
,
B.
,
Schumacher
,
K.
,
Fischer
,
C.
,
Schneider
,
L.
,
Cames
,
M.
, and
Voß
,
J.-P.
,
2006
,
Micro Cogeneration: Towards Decentralized Energy Systems
,
Springer
,
Berlin
.
26.
Galloway
,
E.
, and
Hebert
,
L.
,
1836
,
History and Progress of the Steam Engine, With a Practical Investigation of Its Structure and Application
,
T. Kelly
,
London
.
27.
Ofeldt
,
F. W.
,
1898
, “
Engine
,” U.S. Patent No. US611792 A.
28.
Towne
,
P.
,
1991
, “
The Naphta Engine
,” Gas Engine Magazine, accessed Mar. 2, 2015, available at: www.gasenginemagazine.com/engines-a-z/the-naphtha-engine.aspx
29.
Shuman
,
F.
, and The Sun Power Co.,
1907
, “
The Direct Acting Solar Engine—The Prime Mover of the Immediate Future
,” Review Publishing & Printing Company, Philadelphia.
30.
Durant
,
K.
,
1976
,
The Naphtha Launch (Monographs)
,
Adirondack Museum
, Blue Mountain Lake, NY.
31.
Tissandier
,
G.
, and
de Parville
,
H.
,
1888
, “
Moteurs a Vapeurs Volatiles
,”
La Nat.
,
790
, pp.
113
114
.
32.
Escher
Wyss
,
1912
,
Motorboote und Motoryachten
, Escher Wyss A.G., Zurich, reprinted by
Brian Hillsdon and Jim White
in 1982.
33.
NY Times,
1904
, “
Naphta Launch Ablaze, Menaces Yachts at the Rendezvous of the New York Yacht Club
,”
The New York Times
, available at: http://query.nytimes.com/mem/archive-free/pdf?res=9C06EFDC1230E132A25755C2A9619C946597D6CF
34.
Pytilinski
,
J.
,
1978
, “
Solar Energy Installations for Pumping Irrigation Water
,”
Sol. Energy
,
21
(
4
), pp.
255
262
.10.1016/0038-092X(78)90001-4
35.
Spencer
,
L.
,
1989
, “
A Comprehensive Review of Small Solar-Powered Heat Engines: Part I. A History of Solar–Powered Devices Up to 1950
,”
Sol. Energy
,
43
(
4
), pp.
191
196
.10.1016/0038-092X(89)90019-4
36.
D'Amelio
,
L.
,
1935
, Impiego di Vapori ad alto Peso Molecolare in Piccole Turbine e Utilizzazione del Calore Solare Per Energia Motrice, Industria Napoletana Arti Grafiche, Naples, Italy.
37.
D'Amelio
,
L.
,
1936
, “
La Turbina a Vapore ed i cicli Binari con Fluidi Diversi Dall'acqua Fra le Isoterme Inferiori
,”
L'Elettrotecnica
,
XXIII
(
9
), pp.
250
257
.
38.
D'Amelio
,
L.
,
1936
, “
La Turbina a Vapore ed i cicli Binari con Fluidi Diversi Dall'acqua Fra le Isoterme Inferiori
,”
L'Elettrotecnica
,
XXIII
(
10
), pp.
286
292
.
39.
D'Amelio
,
L.
,
1939
, “
Le Acque Termali Come Fonti di Energia
,”
I combustibili nazionali ed il loro impiego
,
Reale Accademia Delle Scienze di Torino
,
Turin, Italy
, pp.
293
307
.
40.
Dornig
,
M.
,
1959
,
Trattato Generale Delle Macchine Termiche ed Idrauliche: Macchine a Vapore
,
Libreria editrice politecnica C. Tamburini
,
Milan, Italy
, p.
246
.
41.
D'Amelio
,
L.
,
1958
, “
A Steam Engine Using a Mixture of Vapours From Non-Miscible Fluids as a Solar Engine With Flat Plate Collectors
,”
International Conference on the Use of Solar Energy
,
Tucson, AZ
, Oct. 31–Nov. 1, E. F. Carpenter, ed., Arizona Unversity Press, Tucson, AZ.
42.
D'Amelio
,
L.
,
1963
, “
Thermal Machines for the Conversion of Solar Energy Into Mechanical Power
,”
Sol. Energy
,
7
(
2
), p.
82
.10.1016/0038-092X(63)90016-1
43.
DiPippo
,
R.
,
2012
,
Geothermal Power Plants
,
3rd ed.
,
Butterworth–Heinemann
,
Boston
, Chap. 8.
44.
Povarov
,
O.
,
Saakyan
,
V.
,
Nikolski
,
A.
,
Luzin
,
V.
,
Tomarov
,
G.
, and
Sapozhnikov
,
M.
,
2003
, “
Experience of Creation and Operation of Geothermal Power Plants at Mutnovsky Geothermal Field, Kamchatka, Russia
,”
International Geothermal Conference
, Reykjavík, Iceland, Sept. 14–17, Paper No. S01-052.
45.
Tomarov
,
G. V.
,
Nikolsky
,
A. A.
,
Semenov
,
V. N.
, and
Shipkov
,
A. A.
,
2010
, “
Recent Geothermal Power Projects in Russia
,”
World Geothermal Congress
, Bali, Indonesia, Apr. 25–29.
46.
Tabor
,
H.
, and
Bronicki
,
L.
,
1963
, “
Small Turbine for Solar Energy Power Package
,”
Sol. Energy
,
7
(
2
), p.
82
.10.1016/0038-092X(63)90015-X
47.
Ray
,
S. K.
, and
Moss
,
G.
,
1966
, “
Fluorochemicals as Working Fluids for Small Rankine Cycle Power Units
,”
Adv. Energy Convers.
,
6
(
2
), pp.
89
102
.10.1016/0365-1789(66)90003-8
48.
Spencer
,
L.
,
1989
, “
A Comprehensive Review of Small Solar-Powered Heat Engines: Part II. Research Since 1950—‘Conventional Engines’ Up to 100 kW
,”
Sol. Energy
,
43
(
4
), pp.
197
210
.10.1016/0038-092X(89)90020-0
49.
Bronicki
,
L.
,
1972
, “
The Ormat Rankine Power Unit
,” 7th International Energy Conversion Engineering Conference (
IECEC
), San Diego, CA, Sept. 25–29, pp.
327
334
.
50.
World Oil,
1972
, “
Turbo-Generator Provides, 2,000 Watts Remote Power
,”
World Oil
,
175
(
7
), pp.
67
69
.
51.
Bronicki
,
L.
,
1968
, “
Ten Years of Research, Development and Operation of Rankine Cycle Power Units in Israel
,” International Energy Conversion Engineering Conference (IECEC), Boulder, CO, Aug. 13–17.
52.
Einav
,
A.
,
2004
, “
Solar Energy Research and Development Achievements in Israel and Their Practical Significance
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
921
928
.10.1115/1.1758246
53.
Bronicki
,
L. Y.
,
2007
, “
Organic Rankine Cycles in Geothermal Power Plants: 25 Years of Ormat Experience
,”
GRC Trans.
,
31
, pp.
499
502
.https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1025267
54.
Larjola
,
J.
,
1988
, “
ORC Power Plant Based on High Speed Technology
,”
Conference on High Speed Technology
, Lappeenranta, Finland, Aug. 21–24, Paper No. ENTE D-15, pp.
63
77
.
55.
Platell
,
O. B.
,
1976
, “
Progress of Saab Scania's Steam Power Project
,”
SAE
Technical Paper No. 760344.10.4271/760344
56.
Luchter
,
S.
, and
Renner
,
R.
,
1977
, “
Assessment of the Technology of Rankine Engines for Automobiles
,” U.S. Energy Research and Development Administration, Washington, DC, Technical Report No. ERDA-77-54.
57.
Di Bella
,
F. A.
,
Di Nanno
,
L. R.
, and
Koplow
,
M. D.
,
1983
, “
Laboratory and On-Highway Testing of Diesel Organic Rankine Compound Long-Haul Vehicle Engine
,”
SAE
Technical Paper No. 830122.10.4271/830122
58.
Werner
,
D.
, and
Barber
,
R.
,
1973
, “
Working Fluid Selection for a Small Rankine Cycle Total Energy System for Recreation Vehicles
,”
8th Intersociety Energy Conversion Engineering Conference
,
Philadelphia
, Aug. 13–17, pp.
146
151
.
59.
Barber
,
R.
,
1974
, “
Potential of Rankine Engines to Produce Power From Waste Heat Streams
,”
9th Intersociety Energy Conversion Engineering Conference
,
San Francisco, CA
, Aug. 26–30, pp.
508
514
.
60.
Prigmore
,
D.
, and
Barber
,
R.
,
1975
, “
Cooling With the Sun's Heat Design Considerations and Test Data for a Rankine Cycle Prototype
,”
Sol. Energy
,
17
(
3
), pp.
185
192
.10.1016/0038-092X(75)90058-4
61.
Abbin
,
J.
,
1978
, “
Solar Total Energy Test Facility Project Test Summary Report: Rankine Cycle Energy Conversion Subsystem
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND-78-0396.
62.
Barber
,
R.
, and
Batton
,
W.
,
1988
, “
Development of a 25 kW Solar Electric-Power-Generation Unit
,”
10th ASME Solar Energy Conference
, Denver, CO, Apr. 10–14, pp.
237
243
.
63.
Jaffe
,
L. D.
,
1988
, “
Review of Test Results on Parabolic Dish Solar Thermal Power Modules With Dish-Mounted Rankine Engines and for Production of Process Steam
,”
ASME J. Sol. Energy Eng.
,
110
(
4
), pp.
275
281
.10.1115/1.3268268
64.
Prasad
,
A.
,
1980
, “
Field Testing of a 600 kW Organic Rankine Cycle Waste Recovery System: Results to Date
,”
Energy Technology Conference
, New Orleans, LA, Feb. 3–7, Vol.
1
, pp.
482
494
.
65.
Boretz
,
J. E.
,
1986
, “
Supercritical Organic Rankine Engines (SCORE)
,”
21st Intersociety Energy Conversion Engineering Conference (IECEC'86)
, San Diego, CA, Aug. 25–29, Vol.
3
, pp.
2050
2054
.
66.
Angelino
,
G.
, and
Invernizzi
,
C.
,
1993
, “
Cyclic Methylsiloxanes as Working Fluids for Space Power Cycles
,”
ASME J. Sol. Energy Eng.
,
115
(
3
), pp.
130
137
.10.1115/1.2930039
67.
Bado
,
G.
,
Tomei
,
G.
,
Angelino
,
G.
,
Gaia
,
M.
, and
Macchi
,
E.
,
1979
, “
The Ansaldo 35 kW Solar Power System
,”
Sun II, Proceedings of the Silver Jubilee Congress
,
Atlanta, GA
, May 28–June 1, Vol.
2
, pp.
1090
1094
.
68.
Angelino
,
G.
,
Gaia
,
M.
,
Macchi
,
E.
,
Barutti
,
A.
,
Maccio
,
C.
, and
Tomei
,
G.
,
1982
, “
Test Results of a Medium Temperature Solar Engine
,”
Int. J. Ambient Energy
,
3
(
3
), pp.
115
126
.10.1080/01430750.1982.9675838
69.
Barutti
,
A.
,
Pedrick
,
W.
,
Angelino
,
G.
,
Gaia
,
M.
, and
Macchi
,
E.
,
1984
, “
Ansaldo Solar Thermal and Photovoltaic Plants Located at Ballajura, Western Australia
,”
8th Solar World Congress, Biennial Congress of the International Solar Energy Society
,
Perth, Australia
, Aug. 14–19, 1983, Vol. 3, pp.
1572
1576
.
70.
Gaia
,
M.
,
Angelino
,
G.
,
Macchi
,
E.
,
DeHerring
,
D.
, and
Fabry
,
J.
,
1984
, “
Experimental Results of the ORC Engine Developed for the Borj Cedria Solar Plant
,”
8th Solar World Congress, Biennial Congress of the International Solar Energy Society
,
Perth, Australia
, Aug. 14–19, 1983, Vol.
3
, pp.
1460
1464
.
71.
Angelino
,
G.
,
Invernizzi
,
C.
, and
Macchi
,
E.
,
1991
,
Organic Working Fluid Optimization for Space Power Cycles
,
Springer
,
New York
, Chap. 16.
72.
Jokinen
,
T.
,
Larjola
,
J.
, and
Mikhaltsev
,
I.
,
1998
, “
Power Unit for Research Submersible
,”
International Conference on Electric Ship
(
ElecShip 98
), Istanbul, Sept. 1, pp.
114
118
.
73.
Bronicki
,
L.
,
1988
, “
Experience With High Speed Organic Rankine Cycle Turbomachinery
,”
Conference on High Speed Technology
, Lappeenranta University of Technology, Lappeenrata, Finland, Aug. 21–24, pp.
44
61
.
74.
Larjola
,
J.
,
1984
, “
ORC-Plant With High-Speed Gas Lubricated Turbogenerator
,”
International VDI Seminar
,
VDI Verlag
, Zurich, Sept. 10–12, Vol.
539
, pp.
697
705
.
75.
van Buijtenen
,
J.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
,
Honkatukia
,
J.
,
Esa
,
H.
,
Backman
,
J.
, and
Reunanen
,
A.
,
2003
, “
Design and Validation of a New High Expansion Ratio Radial Turbine for ORC Application
,”
5th European Conference on Turbomachinery
, Prague, Mar. 18–21.
76.
Curran
,
H.
,
1981
, “
Use of Organic Working Fluids in Rankine Engines
,”
J. Energy
,
5
(
4
), pp.
218
223
.10.2514/3.62532
77.
Atlas Copco
,
2014
, “Expanders EG, EGi, EEGi-Series,” Atlas Copco Gas and Process, Cologne, Germany, accessed Nov. 1, 2014, www.atlascopco-gap.com/products/expanders/eg-egi-eegi-series
78.
Exergy, 2014, Exergy S.p.A., Bologna, Italy, http://exergy-orc.com
79.
Spadacini
,
C.
,
Centemeri
,
L.
,
Xodo
,
L. G.
,
Astolfi
,
M.
,
Romano
,
M. C.
, and
Macchi
,
E.
,
2011
,
A New Configuration for Organic Rankine Cycle Power Systems
,”
1st International Seminar on ORC Power System
(
ORC2011
), Delft, The Netherlands, Sept. 22–23http://orc2011.fyper.com/uploads/File/presentations1/A%20new%20configurations%20for%20ORC%20power%20systems.pdf.
80.
Spadacini
,
C.
,
Rizzi
,
D.
,
Saccilotto
,
C.
,
Salgarollo
,
S.
, and
Centemeri
,
L.
,
2013
, “
The Radial Outflow Turbine Technology
,”
2nd International Seminar on ORC Power System
(
ORC2013
), Rotterdam, Oct. 7–8.http://www.asme-orc2013.nl/uploads/File/PPT%20139.pdf
81.
Hawkins
,
L.
,
Lei
,
Z.
,
Blumber
,
E.
,
Mirmobin
,
P.
, and
Erdlac
,
R.
,
2012
, “
Heat-to-Electricity With High-Speed Magnetic Bearing/Generator System
,”
Geothermal Resources Council Annual Meeting
, Reno, NV, Sept. 30–Oct. 3, Vol.
36
, pp.
1073
1078
.
82.
GE Oil & Gas, 2014, “ORegen,” accessed Nov. 1, 2014, www.ge-energy.com/products_and_services/services/oil_and_gas_services/oregen.jsp
83.
Del Turco
,
P.
,
Asti
,
A.
,
Del Greco
,
A.
,
Bacci
,
A.
,
Landi
,
G.
, and
Seghi
,
G.
,
2011
, “
The ORegen Waste Heat Recovery Cycle: Reducing the CO2 Footprint by Means of Overall Cycle Efficiency Improvement
,”
ASME
Paper No. GT2011-45051.10.1115/GT2011-45051
84.
Burrato
,
A.
,
2013
, “
ORegenTM Waste Heat Recovery: Development and Applications
,”
2nd International Seminar on ORC Power Systems
(
ORC2013
), Rotterdam, Oct. 7–8.http://www.asme-orc2013.nl/uploads/File/PPT%20098.pdf
85.
Ormat
, 2014, “Green Energy You Can Rely On,” Ormat Technologies Inc., www.ormat.com
86.
Bronicki
,
L.
,
2013
, “
Short Review of the Long History of ORC Power Systems
,”
2nd International Seminar on ORC Power Systems
(
ORC2013
), Rotterdam, Oct. 7–8.http://www.asme-orc2013.nl/uploads/File/ORC%202013%20-%20Keynote%20lecture%20Dr.%20Bronicki.pdf
87.
Bronicki
,
L.
,
2013
, Personal communication.
88.
Canada
,
S.
,
Brosseau
,
D.
, and
Price
,
H.
,
2006
, “
Design and Construction of the APS 1-MWE Parabolic Trough Power Plant
,”
ASME
Paper No. 2006-99139.10.1115/ISEC2006-99139
89.
Triogen
,
2014
, “
Triogen: Power From Heat
,” Triogen B.V., Goor, The Netherlands, www.triogen.nl
90.
van Buijtenen
,
J.
,
Eppinga
,
Q.
, and
Ganassin
,
S.
,
2013
, “
Development and Operation of a High Temperature High Speed Organic Rankine Cycle System
,” 2nd International Seminar on ORC Power Systems (
ORC2013
), Rotterdam, Oct. 7–8.http://www.asme-orc2013.nl/uploads/File/PPT%20132.pdf
91.
Turboden
, 2014, “
Turboden: Clean Energy Ahead
,” Turboden s.r.l., Brescia, Italy, www.turboden.eu
92.
Bini
,
R.
,
Duvia
,
A.
,
Schwarz
,
A.
,
Gaia
,
M.
,
Bertuzzi
,
P.
, and
Righini
,
W.
,
2004
, “
Operational Results of the First Biomass CHP Plant in Italy Based on Organic Rankine Cycle Turbogenerator and Overview of a Number of Plants in Operation in Europe Since 1998
,”
2nd World Biomass Conference
, Rome, May 10–14, pp.
1716
1721
.
93.
Bini
,
R.
, and
Viscuso
,
F.
,
2011
, “
High Efficiency (25%) ORC for Power-Only Generation Mode in the Range 1–3 MW: An Already Proven Technology Also Available for Partially Cogenerative Applications
,”
1st International Seminar on ORC Power Systems
(
ORC2011
), Delft, The Netherlands, Sept. 22–23.http://orc2011.fyper.com/uploads/File/presentations5/High%20efficience%20ORC%20for%20power%20only%20generation%20mode%20in%20range%20-3%20MW.pdf
94.
GMK
, 2014, “Clean Energy Efficiency,” Gesellschaft fur Motoren und Kraftanlangen GmbH, Reuterstraße, Germany, accessed Feb. 1, 2014, www.gmk.info
95.
Astolfi
,
M.
,
Romano
,
M.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal Sources—Part A: Thermodynamic Optimization
,”
Energy
,
66
, pp.
423
434
.10.1016/j.energy.2013.11.056
96.
Astolfi
,
M.
,
Romano
,
M.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal Sources—Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
.10.1016/j.energy.2013.11.057
97.
Pierobon
,
L.
,
Casati
,
E.
,
Casella
,
F.
,
Haglind
,
F.
, and
Colonna
,
P.
,
2014
, “
Design Methodology for Flexible Energy Conversion Systems Accounting for Dynamic Performance
,”
Energy
,
68
, pp.
667
679
.10.1016/j.energy.2014.03.010
98.
Astolfi
,
M.
,
Bini
,
R.
,
Macchi
,
E.
,
Paci
,
M.
,
Pietra
,
C.
,
Rossi
,
N.
, and
Tizzanini
,
A.
,
2013
, “
Testing of a New Supercritical ORC Technology for Efficient Power Generation From Geothermal Low Temperature Resources
,”
ASME ORC2013—2nd International Seminar on ORC Power Systems
(
ORC2013
), Rotterdam, Oct. 7–8.http://www.asme-orc2013.nl/uploads/File/PPT%20166.pdf
99.
Bronicki
,
L.
,
2007
, “
Organic Rankine Cycles in Geothermal Power Plants 25 Years of Ormat Experience
,”
GRC Trans.
,
31
, pp.
499
502
.http://pubs.geothermal-library.org/lib/grc/1025267.pdf
100.
Colonna
,
P.
,
van der Stelt
,
T. P.
, and
Guardone
,
A.
,
2010
, “
FluidProp (Version 3.0): A Program for the Estimation of Thermophysical Properties of Fluids
,” Asimptote bv, Delft, The Netherlands.
101.
Fröba
,
A.
,
Kremer
,
H.
,
Leipertz
,
A.
,
Flohr
,
F.
, and
Meurer
,
C.
,
2007
, “
Thermophysical Properties of a Refrigerant Mixture of R365mfc (1,1,1,3,3-Pentafluorobutane) and Galden® HT 55 (Perfluoropolyether)
,”
Int. J. Thermophys.
,
28
(
2
), pp.
449
480
.10.1007/s10765-007-0178-y
102.
Opcon
,
2015
, Opcon Energy Systems, Stockholm, http://www.opcon.se/web/oes_en.aspx
103.
Biederman
,
T.
, and
Brasz
,
J.
,
2014
,
Geothermal ORC Systems Using Large Screw Expanders
,”
22nd International Compressor Engineering Conference
,
West Lafayette, IN
, July 14–17.
104.
Lemort
,
V.
,
Guillaume
,
L.
,
Legros
,
A.
,
Declaye
,
S.
, and
Quoilin
,
S.
,
2013
, “
A Comparison of Piston, Screw and Scroll Expanders for Small Scale Rankine Cycle Systems
,”
3rd International Conference on Microgeneration and Related Technologies
,
Naples, Italy
, April 5–17.
105.
Colonna
,
P.
, and
Rebay
,
S.
,
2004
, “
Numerical Simulation of Dense Gas Flows on Unstructured Grids With an Implicit High Resolution Upwind Euler Solver
,”
Int. J. Numer. Methods Fluids
,
46
(
7
), pp.
735
765
.10.1002/fld.762
106.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
107.
Harinck
,
J.
,
Colonna
,
P.
,
Guardone
,
A.
, and
Rebay
,
S.
,
2010
, “
Influence of Thermodynamic Models in 2D Flow Simulations of Turboexpanders
,”
ASME J. Turbomach.
,
132
(
1
), p.
011001
.10.1115/1.3192146
108.
Angelino
,
G.
,
Ferrari
,
P.
,
Giglioli
,
G.
, and
Macchi
,
E.
,
1976
, “
Combined Thermal Engine-Heat Pump Systems for Low-Temperature Heat Generation
,”
Inst. Mech. Eng. Proc.
,
190
(
27
), pp.
255
265
.10.1243/PIME_PROC_1976_190_028_02
109.
Song
,
P.
,
Wei
,
M.
,
Shi
,
L.
,
Danish
,
S.
, and
Ma
,
C.
,
2014
, “
A Review of Scroll Expanders for Organic Rankine Cycle Systems
,”
Appl. Therm. Eng.
(in press).
110.
van Buijtenen
,
J.
,
2009
, “
The Tri-O-Gen Organic Rankine Cycle: Development and Perspectives
,”
Power Eng.: J. Inst. Diesel Gas Turbine Eng.
,
13
(
1
), pp.
4
12
.
111.
Bini
,
R.
, and
Manciana
,
E.
,
1996
, “
Organic Rankine Cycle Turbogenerators for Combined Heat and Power Production From Biomass
,”
3rd Munich Discussion Meeting Energy Conversion From Biomass Fuels Current Trends and Future Systems
, Munich, Oct. 22–23, Paper No. 96A00412.
112.
Bronicki
,
L.
,
2008
, “
Advanced Power Cycles for Enhancing Geothermal Sustainability, 1000 MW Deployed Worldwide
,”
Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century
, Pittsburgh, PA, July 20–24.10.1109/PES.2008.4596118
113.
Krieger
,
Z.
, and
Kaplan
,
U.
,
2000
, “
Apparatus and Method for Producing Power Using Geothermal Fluid
,” Patent No. 6009711.
114.
Brasz
,
J.
,
2011
, “
Low Temperature/Small Capacity ORC System Development
,”
1st International Seminar on ORC Power Systems
(
ORC2011
), Delft, The Netherlands, Sept. 22–23.http://orc2011.fyper.com/uploads/File/Delft%20keynote%20presentation%209.23.11.pdf
115.
Brasz
,
J.
, and
Holdmann
,
G.
,
2005
, “
Power Production From a Moderate—Temperature Geothermal Resource
,”
GRC Trans.
,
29
, pp.
729
733
.http://pubs.geothermal-library.org/lib/grc/1022679.pdf
116.
Levy
,
C. E.
,
2011
, “
Lessons Learned From Raser Technologies' ‘Revolutionary’ Project
,” Breaking Energy, epub, accessed Feb. 1, 2014, www.breakingenergy.com/2011/10/20/lessons-learned-from-raser-technologies-revolutionary-project
117.
Obernberger
,
I.
,
Thonhofer
,
P.
, and
Reisenhofer
,
E.
,
2002
, “
Description and Evaluation of the New ORC Process
,”
Euroheat Power Int.
,
31
(
10
), pp.
18
25
.
118.
Duvia
,
A.
,
Guercio
,
A.
, and
Rossi
,
C.
,
2009
, “
Technical and Economic Aspects of Biomass Fuelled CHP Plants Based on ORC Turbogenerators Feeding Existing District Heating Networks
,”
17th European Biomass Conference
, Hamburg, Germany, June 29–July 3, pp.
2030
2037
.
119.
Hedman
,
B. A.
,
2009
, “
Status of Waste Heat to Power Projects on Natural Gas Pipeline
,” Interstate Natural Gas Association of America (INGAA), Washington, DC.
120.
Bronicki
,
L.
, and
Schochet
,
D.
,
2005
, “
Bottoming Organic Cycle for Gas Turbines
,”
ASME
Paper No. GT2005-68121.10.1115/GT2005-68121
121.
Bove
,
R.
, and
Lunghi
,
P.
,
2006
, “
Electric Power Generation From Landfill Gas Using Traditional and Innovative Technologies
,”
Energy Convers. Manage.
,
47
(
11–12
), pp.
1391
1401
.10.1016/j.enconman.2005.08.017
122.
Gewald
,
D.
,
Siokos
,
K.
,
Karellas
,
S.
, and
Spliethoff
,
H.
,
2012
, “
Waste Heat Recovery From a Landfill Gas-Fired Power Plant
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1779
1789
.10.1016/j.rser.2012.01.036
123.
Campana
,
F.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Peretto
,
A.
,
Baresi
,
M.
,
Fermi
,
A.
,
Rossetti
,
N.
, and
Vescovo
,
R.
,
2013
, “
ORC Waste Heat Recovery in European Energy Intensive Industries: Energy and GHG Savings
,”
Energy Convers. Manage.
,
76
, pp.
244
252
.10.1016/j.enconman.2013.07.041
124.
U.S. DOE Industrial Technology Program
,
2008
, “
Waste Heat Recovery: Technology and Opportunities in U.S. Industry
,” U.S. Department of Energy, Washington, DC.
125.
Sumitomo
,
H.
,
Kado
,
S.
,
Nozaki
,
T.
,
Fushinobu
,
K.
, and
Okazaki
,
K.
,
2005
, “
Exergy Enhancement of Low Temperature Waste Heat by Methanol Steam Reforming for Hydrogen Production
,”
8th Asian Hydrogen Energy Conference
, Beijing, May 26–27, pp.
78
83
.
126.
Department of Energy and Climate Change (DECC)
,
2014
, “
The Potential for Recovering and Using Surplus Heat From Industry
,” Department of Energy and Climate Change, London.
127.
Vescovo
,
R.
,
2009
, “
ORC Recovering Industrial Heat—Power Generation From Waste Energy Streams
,”
Cogeneration and On-Site Power Production
, PennWell Corp., Tulsa, OK.
128.
Madlool
,
N.
,
Saidur
,
R.
,
Hossain
,
M.
, and
Rahim
,
N.
,
2011
, “
A Critical Review on Energy Use and Savings in the Cement Industries
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
2042
2060
.10.1016/j.rser.2011.01.005
129.
Engin
,
T.
, and
Ari
,
V.
,
2005
, “
Energy Auditing and Recovery for Dry Type Cement Rotary Kiln Systems—A Case Study
,”
Energ. Convers. Manage.
,
46
(
4
), pp.
551
562
10.1016/j.enconman.2004.04.007
130.
Karellas
,
S.
,
Leontaritis
,
A.-D.
,
Panousis
,
G.
,
Bellos
,
E.
, and
Kakaras
,
E.
,
2013
, “
Energetic and Exergetic Analysis of Waste Heat Recovery Systems in the Cement Industry
,”
Energy
,
58
, pp.
147
156
.10.1016/j.energy.2013.03.097
131.
Legmann
,
H.
,
2002
, “
Recovery of Industrial Heat in the Cement Industry by Means of the ORC Process
,”
IEEE-IAS/PCA 44th Cement Industry Technical Conference
, Jacksonville, FL, May 5–9, pp.
29
35
.10.1109/.2002.1006482
132.
Born
,
C.
, and
Granderath
,
R.
,
2011
, “
Analysis of Potential and Specific Problems of Heat Recovery in the EAF
,”
Steel Times Int.
,
35
(
5
), pp.
45
48,51
.
133.
Bause
,
T.
,
Campana
,
F.
,
Filippini
,
L.
,
Foresti
,
A.
,
Monti
,
N.
, and
Pelz
,
T.
,
2014
, “
Cogeneration With ORC at Elbe-Stahlwerke Feralpi EAF Shop
,”
Proceedings of the AISTech Conference
, Indianapolis, IN, May 5–8, pp.
1101
1111
.
134.
Tabor
,
H.
,
1962
, “
Use of Solar Energy for Production of Mechanical Power and Electricity by Means of Piston Engines and Turbines
,”
Sol. Energy
,
6
(
3
), pp.
89
93
.10.1016/0038-092X(62)90033-6
135.
Price
,
H.
, and
Hassani
,
V.
,
2002
, “
Modular Trough Power Plant Cycle and System Analysis
,” U.S. National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/TP-550-31240.10.2172/15000200
136.
Prabhu
,
E.
,
2006
, “
Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics
,” U.S. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/SR-550-39433.
137.
Turboden
,
2013
, “
Turboden Solar Thermal Power Applications
,” Turboden s.r.l., Brescia, Italy, Apr. 1, 2014, www.turboden.eu/en/public/downloads/12-COM.P-23-rev.6.pdf?
138.
Elsevier
,
B. V.
,
2014
, “
Scopus: Abstract and Citation Database of Peer Reviewed Literature, Scientific Journals, Books, and Conference Proceedings
,” accessed Dec. 31, 2014, available at: www.Scopus.com
139.
Saidur
,
R.
,
Rezaei
,
M.
,
Muzammil
,
W.
,
Hassan
,
M.
,
Paria
,
S.
, and
Hasanuzzaman
,
M.
,
2012
, “
Technologies to Recover Exhaust Heat From Internal Combustion Engines
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5649
5659
.10.1016/j.rser.2012.05.018
140.
Boretti
,
A. A.
,
2012
, “
Transient Operation of Internal Combustion Engines With Rankine Waste Heat Recovery Systems
,”
Appl. Therm. Eng.
,
48
, pp.
18
23
.10.1016/j.applthermaleng.2012.04.043
141.
Horst
,
T.
,
Tegethoff
,
W.
,
Eilts
,
P.
, and
Koehler
,
J.
,
2014
, “
Prediction of Dynamic Rankine Cycle Waste Heat Recovery Performance and Fuel Saving Potential in Passenger Car Applications Considering Interactions With Vehicles' Energy Management
,”
Energ. Convers. Manage.
,
78
, pp.
438
451
.10.1016/j.enconman.2013.10.074
142.
Maraver
,
D.
,
Royo
,
J.
,
Lemort
,
V.
, and
Quoilin
,
S.
,
2014
, “
Systematic Optimization of Subcritical and Transcritical Organic Rankine Cycles (ORCs) Constrained by Technical Parameters in Multiple Applications
,”
Appl. Energy
,
117
, pp.
11
29
.10.1016/j.apenergy.2013.11.076
143.
DiGenova
,
K.
,
Botros
,
B.
, and
Brisson
,
J.
,
2013
, “
Method for Customizing an Organic Rankine Cycle to a Complex Heat Source for Efficient Energy Conversion, Demonstrated on a Fischer Tropsch Plant
,”
Appl. Energy
,
102
, pp.
746
754
.10.1016/j.apenergy.2012.08.029
144.
Smith
,
I.
, and
da Silva
,
R. M.
,
1994
, “
Development of the Trilateral Flash Cycle System. Part 2: Increasing Power Output With Working Fluid Mixtures
,”
Proc. IMechE Part A
,
208
(
2
), pp.
135
144
.10.1243/PIME_PROC_1994_208_022_02
145.
Boyle
,
P.
,
Hays
,
L.
,
Kaupert
,
K.
, and
Welch
,
P.
,
2013
, “
Performance of Variable Phase Cycle in Geothermal and Waste Heat Recovery Applications
,”
GRC Trans.
,
37
, pp.
679
685
.http://pubs.geothermal-library.org/lib/grc/1030641.pdf
146.
Ho
,
T.
,
Mao
,
S.
, and
Greif
,
R.
,
2012
, “
Comparison of the Organic Flash Cycle (OFC) to Other Advanced Vapor Cycles for Intermediate and High Temperature Waste Heat Reclamation and Solar Thermal Energy
,”
Energy
,
42
(
1
), pp.
213
223
.10.1016/j.energy.2012.03.067
147.
Kane
,
M.
,
Larrain
,
D.
,
Favrat
,
D.
, and
Allani
,
Y.
,
2003
, “
Small Hybrid Solar Power System
,”
Energy
,
28
(
14
), pp.
1427
1443
.10.1016/S0360-5442(03)00127-0
148.
Angelino
,
G.
, and
Colonna
,
P.
,
1998
, “
Multicomponent Working Fluids for Organic Rankine Cycles (ORCs)
,”
Energy
,
23
(
6
), pp.
449
463
.10.1016/S0360-5442(98)00009-7
149.
Chen
,
H.
,
Goswami
,
D.
,
Rahman
,
M.
, and
Stefanakos
,
E.
,
2011
, “
A Supercritical Rankine Cycle Using Zeotropic Mixture Working Fluids for the Conversion of Low-Grade Heat Into Power
,”
Energy
,
36
(
1
), pp.
549
555
.10.1016/j.energy.2010.10.006
150.
Heberle
,
F.
,
Preißinger
,
M.
, and
Brüggemann
,
D.
,
2012
, “
Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles for Low-Enthalpy Geothermal Resources
,”
Renewable Energy
,
37
(
1
), pp.
364
370
.10.1016/j.renene.2011.06.044
151.
Trapp
,
C.
, and
Colonna
,
P.
,
2013
, “
Efficiency Improvement in Precombustion CO2 Removal Units With a Waste-Heat Recovery ORC Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042311
.10.1115/1.4023121
152.
Lampe
,
M.
,
Groß
,
J.
, and
Bardow
,
A.
,
2014
, “
Simultaneous Process and Working Fluid Optimisation for Organic Rankine Cycles (ORC) Using PC-SAFT
,”
Comput. Aided Chem. Eng.
,
30
, pp.
572
576
.10.1016/B978-0-444-59519-5.50115-5
153.
Modelica
,
2013
, “
Modelica—A Unified Object-Oriented Language for Physical Systems Modeling—Language Specification Version 3.2 Revision 2
,” Modelica Association, Linköping, Sweden, www.modelica.org
154.
Casella
,
F.
,
Mathijssen
,
T.
,
van Buijtenen
,
J.
, and
Colonna
,
P.
,
2013
, “
Dynamic Modeling of ORC Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042310
.10.1115/1.4023120
155.
Kadota
,
M.
, and
Yamamoto
,
K.
,
2009
, “
Advanced Transient Simulation on Hybrid Vehicle Using Rankine Cycle System
,”
SAE Int. J. Engines
,
1
(
1
), pp.
240
247
.10.4271/2008-01-0310
156.
Quoilin
,
S.
,
Aumann
,
R.
,
Grill
,
A.
,
Schuster
,
A.
,
Lemort
,
V.
, and
Spliethoff
,
H.
,
2011
, “
Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Energy
,
88
(
6
), pp.
2183
2190
.10.1016/j.apenergy.2011.01.015
157.
Casati
,
E.
,
Desideri
,
A.
,
Casella
,
F.
, and
Colonna
,
P.
,
2012
, “
Preliminary Assessment of a Novel Small CSP Plant Based on Linear Collectors, ORC and Direct Thermal Storage
,”
18th SolarPACES Conference
,
Marrakech, Morocco
, Sept. 11–14.
158.
Harinck
,
J.
,
Pasquale
,
D.
,
Pecnik
,
R.
,
van Buijtenen
,
J.
, and
Colonna
,
P.
,
2013
, “
Performance Improvement of a Radial ORC Turbine by Means of Automated Design
,”
Proc. IMechE Part A
,
227
(
6
), pp.
637
645
.10.1177/0957650913499565
159.
Casati
,
E.
,
Vitale
,
S.
,
Pini
,
M.
,
Persico
,
G.
, and
Colonna
,
P.
,
2014
, “
Centrifugal Turbines for Mini-Organic Rankine Cycle Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122607
.10.1115/1.4027904
160.
Sciacovelli
,
L.
, and
Cinnella
,
P.
,
2014
, “
Numerical Study of Multistage Transcritical Organic Rankine Cycle Axial Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
082604
.10.1115/1.4026804
161.
Spinelli
,
A.
,
Pini
,
M.
,
Dossena
,
V.
,
Gaetani
,
P.
, and
Casella
,
F.
,
2013
, “
Design, Simulation, and Construction of a Test Rig for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042304
.10.1115/1.4023114
162.
Mathijssen
,
T.
,
Casati
,
E.
,
Gallo
,
M.
,
Nannan
,
N.
,
Zamfirescu
,
C.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2014
, “
Flexible Asymmetric Shock Tube (FAST): Commissioning of a High Temperature Ludwieg Tube for Wave Propagation Measurements
,”
Exp. Fluids
(submitted).
163.
Seher
,
D.
,
Lengenfelder
,
T.
,
Gerhardt
,
J.
,
Eisenmenger
,
N.
,
Hackner
,
M.
, and
Krinn
,
I.
,
2012
, “
Waste Heat Recovery for Commercial Vehicles With a Rankine Process
,”
21st Aachen Colloquium on Automobile and Engine Technology
,
Aachen, Germany
, Oct. 7–9.
164.
Bell
,
I. H.
,
Groll
,
E. A.
,
Braun
,
J. E.
, and
Horton
,
W. T.
,
2013
, “
A Computationally Efficient Hybrid Leakage Model for Positive Displacement Compressors and Expanders
,”
Int. J. Refrig.
,
36
(
7
), pp.
1965
1973
.10.1016/j.ijrefrig.2013.01.005
165.
Giuffrida
,
A.
,
2014
, “
Modelling the Performance of a Scroll Expander for Small Organic Rankine Cycles When Changing the Working Fluid
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
1040
1049
.10.1016/j.applthermaleng.2014.06.004
166.
Ziviani
,
D.
,
Bell
,
I.
,
de Paepe
,
M.
, and
van der Broek
,
M.
,
2014
, “
Comprehensive Model of a Single Screw Expander for ORC-Systems
,”
22nd International Compressor Engineering Conference
,
Purdue, IN
, July 14–17, Paper No. 1506.
167.
Smith
,
I.
,
Stosic
,
N.
, and
Kovacevic
,
A.
,
2014
,
Power Recovery From Low Grade Heat by Means of Screw Expanders
,
Chandos Publishing
, Oxford, UK.
168.
Wang
,
H.
, and
Peterson
,
R.
,
2011
, “
Performance Enhancement of a Thermally Activated Cooling System Using Microchannel Heat Exchangers
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2951
2962
.10.1016/j.applthermaleng.2011.05.026
169.
Karellas
,
S.
,
Schuster
,
A.
, and
Leontaritis
,
A.-D.
,
2012
, “
Influence of Supercritical ORC Parameters on Plate Heat Exchanger Design
,”
Appl. Therm. Eng.
,
33–34
, pp.
70
76
.10.1016/j.applthermaleng.2011.09.013
170.
Harris
,
C.
,
Kelly
,
K.
,
Wang
,
T.
,
McCandless
,
A.
, and
Motakef
,
S.
,
2002
, “
Fabrication, Modeling, and Testing of Micro-Cross-Flow Heat Exchangers
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
726
735
.10.1109/JMEMS.2002.806025
171.
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2013
,
Next Generation Microchannel Heat Exchangers
,
Springer
,
New York
.
172.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
173.
Muley
,
A.
,
Kiser
,
C.
,
Sundn
,
B.
, and
Shah
,
R.
,
2012
, “
Foam Heat Exchangers: A Technology Assessment
,”
Heat Transfer Eng.
,
33
(
1
), pp.
42
51
.10.1080/01457632.2011.584817
174.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids: An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.10.1016/j.rser.2009.10.004
175.
Cevallos
,
J.
,
Bergles
,
A.
,
Bar-Cohen
,
A.
,
Rodgers
,
P.
, and
Gupta
,
S.
,
2012
, “
Polymer Heat Exchangers-History, Opportunities, and Challenges
,”
Heat Transfer Eng.
,
33
(
13
), pp.
1075
1093
.10.1080/01457632.2012.663654
176.
Turboden
,
2009
, “
Agreement for Pratt & Whitney Power Systems, a United Technologies Corporation Company, to Purchase Majority Interest in Turboden
,” Turboden, s.r.l., Brescia, Italy, accessed Nov. 1, 2014, www.turboden.eu/en/public/press/20090629_turboden_pratt_ENG.pdf
177.
Sprouse
,
C.
, and
Depcik
,
C.
,
2013
, “
Review of Organic Rankine Cycles for Internal Combustion Engine Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
711
722
.10.1016/j.applthermaleng.2012.10.017
178.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2007
, “
Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines
,”
SAE
Technical Paper No. 2007-01-0537.10.4271/2007-01-0537
179.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2007
, “
Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part II: Working Fluids for WHR-ORC
,”
SAE
Technical Paper No. 2007-01-0543.10.4271/2007-01-0543
180.
Freymann
,
R.
,
Strobl
,
W.
, and
Obieglo
,
A.
,
2008
, “
The Turbosteamer: A System Introducing the Principle of Cogeneration in Automotive Applications
,”
MTZ
,
69
(
5
), pp.
20
27
.10.1007/BF03226909
181.
Lang
,
W.
,
Almbauer
,
R.
, and
Colonna
,
P.
,
2013
, “
Assessment of Waste Heat Recovery for a Heavy-Duty Truck Engine Using an ORC Turbogenerator
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042313
.10.1115/1.4023123
182.
Endo
,
T.
,
Kawajiri
,
S.
,
Kojima
,
Y.
,
Takahashi
,
K.
,
Baba
,
T.
,
Ibaraki
,
S.
,
Takahashi
,
T.
, and
Shinohara
,
M.
,
2007
, “
Study on Maximizing Exergy in Automotive Engines
,”
SAE
Technical Paper No. 2007-01-0257.10.4271/2007-01-0257
183.
Nag
,
P.
,
2008
,
Power Plant Engineering
,
3rd ed.
,
Tata McGraw-Hill, New Delhi, India.
184.
Lin
,
C.-C.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.10.1109/TCST.2003.815606
185.
Dettmer
,
R.
,
2010
, “
The Mighty Micro
,”
Eng. Technol.
,
5
(
3
), pp.
42
45
.10.1049/et.2010.0310
186.
Kane
,
M.
,
2011
, “
Micro-Cogeneration Based Organic Rankine Cycle (ORC) System in a District Heating Network: A Case Study of the Lausanne City Swimming Pool
,”
1st International Seminar on ORC Power Systems
(
ORC2011
), Delft, The Netherlands, Sept. 22–23.
187.
Zanelli
,
R.
, and
Favrat
,
D.
,
1994
, “
Experimental Investigation of a Hermetic Scroll Expander-Generator
,”
12th International Compressor Engineering Conference
, West Lafayette, IN, July 19–22, pp.
459
464
.
188.
Casati
,
E.
,
Galli
,
A.
, and
Colonna
,
P.
,
2013
, “
Thermal Energy Storage for Solar-Powered Organic Rankine Cycle Engines
,”
Sol. Energy
,
96
, pp.
205
219
.10.1016/j.solener.2013.07.013
189.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
(
5
), pp.
955
966
.10.1016/j.solener.2011.02.010
190.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1809
1817
.10.1016/j.applthermaleng.2008.08.016
191.
Tchanche
,
B.
,
Lambrinos
,
G.
,
Frangoudakis
,
A.
, and
Papadakis
,
G.
,
2011
, “
Low-Grade Heat Conversion Into Power Using Organic Rankine Cycles—A Review of Various Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3963
3979
.10.1016/j.rser.2011.07.024
192.
Vélez
,
F.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Antolín
,
G.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2012
, “
A Technical, Economical and Market Review of Organic Rankine Cycles for the Conversion of Low-Grade Heat for Power Generations
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4175
4189
.10.1016/j.rser.2012.03.022
193.
Wang
,
L.
,
Roskilly
,
A.
, and
Wang
,
R.
,
2014
, “
Solar Powered Cascading Cogeneration Cycle With ORC and Adsorption Technology for Electricity and Refrigeration
,”
Heat Transfer Eng.
,
35
(
11–12
), pp.
1028
1034
.10.1080/01457632.2013.863067
194.
Jradi
,
M.
, and
Riffat
,
S.
,
2014
, “
Modelling and Testing of a Hybrid Solar-Biomass ORC-Based Micro-CHP System
,”
Int. J. of Energy Res.
,
38
(
8
), pp.
1039
1052
.10.1002/er.3145
195.
Astolfi
,
M.
,
Xodo
,
L.
,
Romano
,
M.
, and
Macchi
,
E.
,
2011
, “
Technical and Economical Analysis of a Solar-Geothermal Hybrid Plant Based on an Organic Rankine Cycle
,”
Geothermics
,
40
(
1
), pp.
58
68
.10.1016/j.geothermics.2010.09.009
196.
Avery
,
W.
, and
Wu
,
C.
,
1994
,
Renewable Energy From the Ocean: A Guide to OTEC
,
Oxford University Press
,
New York
.
197.
Ikegami
,
Y.
, and
Morisaki
,
T.
,
2012
, “
Research on Double Stage-Rankine Cycle for Ocean Thermal Energy Conversion Using Ammonia as Working Fluid
,”
22nd International Offshore and Polar Engineering Conference
,
Rhodes, Greece
, June 17–22, pp.
769
775
.
198.
Sun
,
F.
,
Ikegami
,
Y.
,
Jia
,
B.
, and
Arima
,
H.
,
2012
, “
Optimization Design and Exergy Analysis of Organic Rankine Cycle in Ocean Thermal Energy Conversion
,”
Appl. Ocean Res.
,
35
, pp.
38
46
.10.1016/j.apor.2011.12.006
199.
Yang
,
M.-H.
, and
Yeh
,
R.-H.
,
2014
, “
Analysis of Optimization in an OTEC Plant Using Organic Rankine Cycle
,”
Renewable Energy
,
68
, pp.
25
34
.10.1016/j.renene.2014.01.029
200.
Vega
,
L.
,
2010
, “
Economics of Ocean Thermal Energy Conversion (OTEC): An Update
,”
Offshore Technology Conference
(
OTC
). Houston, TX, May 3–6, Paper No. OTC 21016.10.4043/21016-MS
201.
Angelino
,
G.
, and
Colonna
,
P.
,
2000
, “
Air Cooled Siloxane Bottoming Cycle for Molten Carbonate Fuel Cells
,”
Fuel Cell Seminar
, Portland, OR, Oct. 30–Nov. 2, pp.
667
670
.
202.
De Servi
,
C.
,
Campanari
,
S.
,
Tizzanini
,
A.
,
Pietra
,
C.
,
2013
, “
Enhancement of the Electrical Efficiency of Commercial Fuel Cell Units by Means of an Organic Rankine Cycle: A Case Study
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042309
10.1115/1.4023119
203.
Akkaya
,
A.
, and
Sahin
,
B.
,
2009
, “
A Study on Performance of Solid Oxide Fuel Cell-Organic Rankine Cycle Combined System
,”
Int. J. Energy Res.
,
33
(
6
), pp.
553
564
.10.1002/er.1490
204.
Chacartegui
,
R.
,
Snchez
,
D.
,
Noz
,
J. M.
, and
Sánchez
,
T.
,
2009
, “
Alternative ORC Bottoming Cycles for Combined Cycle Power Plants
,”
Appl. Energy.
,
86
(
10
), pp.
2162
2170
.10.1016/j.apenergy.2009.02.016
205.
Kusterer
,
K.
,
Braun
,
R.
,
Köllen
,
L.
,
Sugimoto
,
T.
,
Tanimura
,
K.
, and
Bohn
,
D.
,
2013
, “
Combined Solar Thermal Gas Turbine and Organic Rankine Cycle Application for Improved Cycle Efficiencies
,”
ASME
Paper No. GT2013-94713.10.1115/GT2013-94713
206.
Dunham
,
M.
, and
Iverson
,
B.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
758
770
.10.1016/j.rser.2013.11.010
207.
Nored
,
D. L.
, and
Bernatowicz
,
D. T.
,
1986
, “
Electrical Power System Design for the U.S. Space Station
,”
21st Intersociety Energy Conversion Engineering Conference
, San Diego, CA, Aug. 25–29, pp.
1416
1422
.
208.
Farina
,
F.
,
Mao
,
C.
, and
Tuninetti
,
G.
,
1987
, “
Organic Rankine Cycle Power Conversion Systems for Space Applications
,”
Photovoltaic Generators in Space, 5th European Symposium on Photovoltaic Generators in Space, The Hague/Scheveningen
, The Netherlands, Sept. 30–Oct. 2, pp.
225
230
.
209.
KCORC, 2013, “
Knowledge Center on Organic Rankine Cycle Technology
,” ASME International Gas Turbine Institute, www.kcorc.org
You do not currently have access to this content.