Research activities on the combustion of synthetic jet fuels and bioderived jet fuels have increased notably over the last 10 yr in order to solve the challenging reduction of dependence of air transportation on petroleum. Within the European Community's Seventh Framework Programme, the combustion of a 100% GtL from Shell and a 80/20% vol. GtL/1-hexanol blend were studied in a jet-stirred reactor (JSR). This synthetic GtL fuel mainly contains n-alkanes, iso-alkanes, and cyclo-alkanes. We studied the oxidation of these alternative jet fuels under the same conditions (temperature, 550–1150 K; pressure, 10 bar; equivalence ratio, 0.5–2; initial fuel concentration, 1000 ppm). For simulating the oxidation kinetics of these fuels we used a new surrogate mixture consisting of n-dodecane, 3-methylheptane, n-propylcyclohexane, and 1-hexanol. A detailed chemical kinetic reaction mechanism was developed and validated by comparison with the experimental results obtained in a JSR. The current model was also tested for the auto-ignition of the GtL fuel under shock tubes conditions (φ = 1 and P = 20 atm) using data from the literature. Kinetic computations involving reaction paths analyses and sensitivity analyses were used to interpret the results. The general findings are that the GtL and GtL/hexanol blend have very similar reactivity to Jet A-1, which is important since GtL is a drop-in fuel that should have similar performance to the Jet A-1 baseline and 1-hexanol should not significantly affect the reactivity if it is to be used as an additive.

References

References
1.
Hermann
,
F.
,
Klingmann
,
J.
,
Gabrielsson
,
R.
,
Pedersen
,
J. R.
,
Olsson
,
J. O.
, and
Owrang
,
F.
,
2006
, “
Chemical Analysis of Combustion Products From a High-Pressure Gas Turbine Combustor Rig Fueled by Jet A1 Fuel and a Fischer-Tropsch-Based Fuel
,”
ASME Turbo Expo
2006
, Power for Land, Sea, and Air, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90600.10.1115/GT2006-90600
2.
Corporan
,
E.
,
DeWitt
,
M. J.
,
Belovich
,
V.
,
Pawlik
,
R.
,
Lynch
,
A. C.
,
Gord
,
J. R.
, and
Meyer
,
T. R.
,
2007
, “
Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer-Tropsch Jet Fuel
,”
Energy Fuels
,
21
(
5
), pp.
2615
2626
.10.1021/ef070015j
3.
Gokulakrishnan
,
P.
,
Klassen
,
M. S.
, and
Roby
,
R. J.
,
2008
, “
Ignition Characteristics of a Fischer-Tropsch Synthetic Jet Fuel
,”
ASME
Turbo Expo, Berlin, June 9–13,
ASME
Paper No. GT2008-51211. 10.1115/GT2008-51211
4.
Huber
,
M. L.
,
Smith
,
B. L.
,
Ott
,
L. S.
, and
Bruno
,
T. J.
,
2008
, “
Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve
,”
Energy Fuels
,
22
(
2
), pp.
1104
1114
.10.1021/ef700562c
5.
Starck
,
L.
,
Pidol
,
L.
,
Jeuland
,
N.
,
Grosjean
,
F.
,
Lefebvre
,
C.
,
Sicard
,
M.
,
Raepsaet
,
B.
,
Ancelle
,
J.
,
Ser
,
F.
,
Lützow
,
M.
, and
Wahl
,
C.
,
2011
, “
Report on Fuel Comprehensive Characterization (D16)
,”
EU FP7 Project ALFA-BIRD, Alternative Fuels and Biofuels for Aircraft Development: EUFP7/2007-2013
, Grant Agreement No. 213266.
6.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y. L.
,
Feng
,
Q.
, and
Tsotsis
,
T. T.
,
2011
, “
Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels
,”
Combust. Flame
,
158
(3), pp.
434
445
.10.1016/j.combustflame.2010.09.016
7.
Saffaripour
,
M.
,
Veshkini
,
A.
,
Kholghy
,
M.
, and
Thomson
,
M. J.
,
2014
, “
Experimental Investigation and Detailed Modeling of Soot Aggregate Formation and Size Distribution in Laminar Coflow Diffusion Flames of Jet A-1, a Synthetic Kerosene, and n-Decane
,”
Combust. Flame
,
161
(3), pp.
848
863
.10.1016/j.combustflame.2013.10.016
8.
Kahandalawa
,
M. S. P.
,
Dewitt
,
M. J.
,
Corporan
,
E.
, and
Sidhu
,
S.
,
2008
, “
Ignition and Emission Characteristics of Surrogate and Practical Jet Fuels
,”
Energy Fuels
,
22
(
6
), pp.
3673
3679
.10.1021/ef800303a
9.
Rye
,
L.
,
Blakey
,
S.
, and
Wilson
,
C. W.
,
2010
, “
Sustainability of Supply or the Planet: A Review of Potential Drop-in Alternative Aviation Fuels
,”
Energy Environ. Sci.
,
3
(
1
), pp.
17
27
.10.1039/b918197k
10.
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
Autoignition Studies of Conventional and Fischer–Tropsch Jet Fuels
,”
Fuel
,
98
, pp.
249
258
.10.1016/j.fuel.2012.03.041
11.
Dagaut
,
P.
,
Cathonnet
,
M.
,
Rouan
,
J. P.
,
Foulatier
,
R.
,
Quilgars
,
A.
,
Boettner
,
J. C.
,
Gaillard
,
F.
, and
James
,
H.
,
1986
, “
A Jet-Stirred Reactor for Kinetic-Studies of Homogeneous Gas-Phase Reactions at Pressures Up to 10 atm (∼1 MPa)
,”
J. Phys. E: Sci. Instrum.
,
19
(
3
), pp.
207
209
.10.1088/0022-3735/19/3/009
12.
Mzé-Ahmed
,
A.
,
Hadj-Ali
,
K.
,
Diévart
,
P.
, and
Dagaut
,
P.
,
2010
, “
Kinetics of Oxidation of a Synthetic Jet Fuel in a Jet-Stirred Reactor: Experimental and Modeling Study
,”
Energy Fuels
,
24
(
9
), pp.
4904
4911
.10.1021/ef100751q
13.
Le Cong
,
T.
,
Dagaut
,
P.
, and
Dayma
,
G.
,
2008
, “
Oxidation of Natural Gas, Natural Gas/Syngas Mixtures, and Effect of Burnt Gas Recirculation: Experimental and Detailed Kinetic Modeling
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
041502
.10.1115/1.2901181
14.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Livermore, CA, Report No. SAND89-8009.
15.
Glarborg
,
P.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Miller
,
J. A.
,
1986
, “
PSR: “A FORTRAN Program for Modelling Well-Stirred Reactors
,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-8209.
16.
Mzé-Ahmed
,
A.
,
Hadj-Ali
,
K.
,
Dagaut
,
P.
, and
Dayma
,
G.
,
2012
, “
Experimental and Modeling Study of the Oxidation Kinetics of n-Undecane and n-Dodecane in a Jet-Stirred Reactor
,”
Energy Fuels
,
26
(
7
), pp.
4253
4268
.10.1021/ef300588j
17.
Karsenty
,
F.
,
Sarathy
,
S. M.
,
Togbé
,
C.
,
Westbrook
,
C. K.
,
Dayma
,
G.
,
Dagaut
,
P.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2012
, “
Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor
,”
Energy Fuels
,
26
(
8
), pp.
4680–
4689
.10.1021/ef300852w
18.
Diévart
,
P.
,
2008
, “
Oxidation and Combustion Under Ultra-Lean Conditions of Diesel-Relevant Fuels: Experimental Study in a Jet-Stirred Reactor and Modelling
,” Ph.D. thesis, University Lille 1, Lille, France.
19.
Togbé
,
C.
,
Dagaut
,
P.
,
Mzé-Ahmed
,
A.
,
Hadj-Ali
,
K.
, and
Diévart
,
P.
,
2010
, “
Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb
,”
Energy Fuels
,
24
(
11
), pp.
5858
5875
.10.1021/ef101255w
20.
Wang
,
H.
,
Dames
,
E.
,
Sirjean
,
B.
,
Sheen
,
D. A.
,
Tangko
,
R.
,
Violi
,
A.
,
Lai
,
J. Y. W.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
,
Law
,
C. K.
,
Tsang
,
W.
,
Cernansky
,
N. P.
,
Miller
,
D. L.
, and
Lindstedt
,
R. P.
,
2010
, “
A High-Temperature Chemical Kinetic Model of n-Alkane (Up to n-Dodecane), Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-Cyclohexane Oxidation at High Temperatures
,” JetSurF Version 2.0, Sept. 19, 2010, http://melchior.usc.edu/JetSurF/JetSurF2.0
21.
Mzé-Ahmed
,
A.
,
2011
, “
Experimental and Modeling Study of Combustion of High Alkanes, Reformulated Kerosenes and Surrogate Fuels-Pollutants Formation
,” Ph.D. thesis, University of Orléans, Orléans, France.
22.
Vasu
,
S. S.
,
Davidson
,
D. F.
,
Hong
,
Z.
,
Vasudevan
,
V.
, and
Hanson
,
R. K.
,
2009
, “
n-Dodecane Oxidation at High-Pressures: Measurements of Ignition Delay Times and OH Concentration Time-Histories
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
173
180
.10.1016/j.proci.2008.05.006
You do not currently have access to this content.