The evolution of a spark kernel ejected by a sunken fire igniter into a turbulent, fuel–air stratified crossflow was studied both experimentally and using a model in a configuration that is similar to the conditions found in turbine engine combustors. This study allows for variations in the transit time of the kernel across a uniform nonflammable region, before entering a second stream containing a flammable fuel–air mixture. High speed schlieren and emission imaging systems are used to visualize the evolution of the kernel and determine the probability of ignition based on measurements over many spark events. Experiments are performed for a range of mean velocities, transit times, inlet (preheat) temperatures, flammable zone equivalence ratios, and nonflammable zone equivalence ratios. In addition to the typical dependence of ignition on the equivalence ratio of the flammable mixture, the results indicate the strong influence of the kernel transit time and the inlet flow temperature on the probability of ignition. The entrainment between the kernel and the surrounding flow appears to be primarily controlled by the kernel ejection-induced flowfield. Reduced-order modeling suggests that the lowering of the kernel temperature associated with entrainment of the nonflammable mixture significantly reduces the ignition probability, and leads to the conclusion that the presence of fuel close to the igniter is necessary to ensure reliable ignition under adverse conditions.

References

References
1.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications (Series in Mechanical Engineering)
,
WCB/McGraw-Hill
, New York.
2.
Glassman
,
I.
,
2008
,
Combustion
,
4th ed.
,
Elsevier
,
Amsterdam, Netherlands
.
3.
Lefebvre
,
A.
,
1999
,
Gas Turbine Combustion (Combustion: An International Series)
,
Taylor & Francis Group
, Boca Raton, FL.
4.
Dooley
,
K. A.
,
1996
, “
Continuous Plasma Ignition System
,” U.S. Patent No. 5,587,630.
5.
Topham
,
D.
,
Smy
,
P.
, and
Clements
,
R.
,
1975
, “
An Investigation of a Coaxial Spark Igniter With Emphasis on Its Practical Use
,”
Combust. Flame
,
25
, pp.
187
195
.10.1016/0010-2180(75)90084-X
6.
Armstrong
,
J. C.
, and
Wilsted
,
H. D.
,
1952
, “
Investigation of Several Techniques for Improving Altitude-Starting Limits of Turbojet Engines
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. NACA RM E52103.
7.
Lewis
,
B.
, and
Von Elbe
,
G.
,
1987
,
Combustion, Flames, and Explosions of Gases
,
Academic
, Orlando, FL.
8.
Weinberg
,
F. J.
,
Hom
,
K.
,
Oppenheim
,
A. K.
, and
Teichman
,
K.
,
1978
, “
Ignition by Plasma Jet
,”
Nature
,
272
(5651)
, pp.
341
343
.10.1038/272341a0
9.
Bane
,
S.
,
Shepherd
,
J.
,
Kwon
,
E.
, and
Day
,
A.
,
2011
, “
Statistical Analysis of Electrostatic Spark Ignition of Lean H2/O2/Ar Mixtures
,”
Int. J. Hydrogen Energy
,
36
(
3
), pp.
2344
2350
.10.1016/j.ijhydene.2010.05.082
10.
Ballal
,
D. R.
, and
Lefebvre
,
A. H.
,
1975
, “
The Influence of Spark Discharge Characteristics on Minimum Ignition Energy in Flowing Gases
,”
Combust. Flame
,
24
, pp.
99
108
.10.1016/0010-2180(75)90132-7
11.
Rao
,
K.
, and
Lefebvre
,
A.
,
1976
, “
Minimum Ignition Energies in Flowing Kerosine-Air Mixtures
,”
Combust. Flame
,
27
, pp.
1
20
.10.1016/0010-2180(76)90002-X
12.
Swett
,
C. C.
,
1957
, “
Spark Ignition of Flowing Gases Using Long-Duration Discharges
,”
Proc. Combust. Inst.
,
6
(
1
), pp.
523
532
.10.1016/S0082-0784(57)80069-1
13.
Birch
,
A. D.
,
Brown
,
D. R.
, and
Dodson
,
M. G.
,
1981
, “
Ignition Probabilities in Turbulent Mixing Flows
,”
Proc. Combust. Inst.
,
18
(
1
), pp.
1775
1780
.10.1016/S0082-0784(81)80182-8
14.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Progress Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
15.
Sepulveda
,
D.
, and
Striebel
,
E. E.
,
1983
, “
Starting Means for a Gas Turbine Engine
,” U.S. No. Patent 4,417,439
.
16.
Ahmed
,
S. F.
, and
Mastorakos
,
E.
,
2006
, “
Spark Ignition of Lifted Turbulent Jet Flames
,”
Combust. Flame
,
146
(
1–2
), pp.
215
231
.10.1016/j.combustflame.2006.03.007
17.
Srinivasan
,
S.
,
Pasumarti
,
R.
, and
Menon
,
S.
,
2012
, “
Large-Eddy Simulation of Pulsed High-Speed Subsonic Jets in a Turbulent Crossflow
,”
J. Turbul.
,
13
(
1
), pp.
1
21
.10.1080/14685248.2011.633522
18.
Eroglu
,
A.
, and
Breidenthal
,
R. E.
,
2001
, “
Structure, Penetration, and Mixing of Pulsed Jets in Crossflow
,”
AIAA J.
,
39
(
3
), pp.
417
423
.10.2514/2.1351
19.
Kim
,
J.
,
Sforzo
,
B.
,
Seitzman
,
J.
, and
Jagoda
,
J.
,
2012
, “
High Energy Spark Discharges for Ignition
,”
AIAA
Paper No. 2012-4172.10.2514/6.2012-4172
20.
Hall
,
J. M.
, and
Petersen
,
E. L.
,
2006
, “
An Optimized Kinetics Model for OH Chemiluminescence at High Temperatures and Atmospheric Pressures
,”
Int. J. Chem. Kinet.
,
38
(
12
), pp.
714
724
.10.1002/kin.20196
21.
Higgins
,
B.
,
McQuay
,
M.
,
Lacas
,
F.
,
Rolon
,
J.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
22.
Goodwin
,
D.
,
2009
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Caltech, Pasadena, CA.
23.
Schulz
,
J.
,
Gottiparthi
,
K.
, and
Menon
,
S.
,
2012
, “
Ionization in Gaseous Detonation Waves
,”
Shock Waves
,
22
(6)
, pp.
579
590
.10.1007/s00193-012-0412-9
24.
Bose
,
D.
, and
Candler
,
G. V.
,
1996
, “
Thermal Rate Constants of the N2 + O → NO + N Reaction Using Ab Initio 3A″ and 3A′ Potential Energy Surfaces
,”
J. Chem. Phys.
,
104
(
8
), pp.
2825
2833
.10.1063/1.471106
25.
Park
,
C.
,
Howe
,
J.
,
Jaffe
,
R.
, and
Candler
,
G.
,
1994
, “
Review of Chemical-Kinetic Problems of Future NASA Missions
,”
J. Thermophys. Heat Transfer
,
8
(3)
, pp.
385
392
.10.2514/3.554
26.
Teulet
,
P.
,
Sarrette
,
J. P.
, and
Gomes
,
A. M.
,
1999
, “
Calculation of Electron Impact Inelastic Cross Sections and Rate Coefficients for Diatomic Molecules. Application to Air Molecules
,”
J. Quant. Spectrosc. Radiat. Transfer
,
62
(
5
), pp.
549
569
.10.1016/S0022-4073(98)00129-0
27.
McBride
,
B. J.
,
Zehe
,
M. J.
, and
Gordon
,
S.
,
2002
,
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,
National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field
, Cleveland, OH.
28.
Combusion Research Group, 2014, “
The San Diego Mechanism: Chemical Kinetic Mechanisms for Combustion Applications
,” Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, CA, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
29.
Chakravarti
,
I. M.
,
1956
, “
Fractional Replication in Asymmetrical Factorial Designs and Partially Balanced Arrays
,”
Sankhyā: Indian J. Stat.
,
17
(
2
), pp.
143
164
.
30.
Spadaccini
,
L.
, and
Colket
, III,
M.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Progress Energy Combust.
,
20
(
5
), pp.
431
460
.10.1016/0360-1285(94)90011-6
You do not currently have access to this content.