In this paper, common faults in main components of an industrial two-shaft gas turbine are simulated, and the fault signatures are determined in both part and full-load conditions. As fouling and erosion are the most important and effective causes of performance deterioration in gas turbines (GTs), the effects of these faults on the performance of all three main components including compressor, gas generator turbine, and power turbine are studied and their effects on the overall efficiency of the whole system are analyzed. In this study, the faults simulation is performed by changing the health parameters (flow capacity and isentropic efficiency) of each GT components via modification of the compressor and turbines characteristic curves. The results obtained from the compressor fouling simulation are validated against the published experimental data; the validation results represent acceptable simulation accuracy in estimation of the measurement parameters deviation. Moreover, the fault signatures are determined in full-load conditions, and the effects of the examined faults on the main GT parameters are analyzed; in this way, the key measurement parameters in identification of these faults are introduced. Finally, in order to identify the fault signatures in part-load conditions, the fault implantation process is performed for each 10% reduction in gas turbine loads. Simulation results demonstrate that the fault signatures have different sensitivity to load variations, and thus, these are in general a function of the GT loading conditions.

References

References
1.
Escher
,
P. C.
,
1995
, “
An Object-Oriented Gas-Path Analysis Computer Program for General Applications
,” Ph.D. thesis, School of Mechanical Engineering, Cranfield University, Bedford, UK.
2.
Zwebek
,
A.
, and
Pilidis
,
P.
,
2003
, “
Degradation Effects on Combined Cycle Power Plant Performance—Part I: Gas Turbine Cycle Component Degradation Effects
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
651
657
.10.1115/1.1519271
3.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.10.1115/1.2906565
4.
Ogaji
,
S. O. T.
,
Sampath
,
S.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2002
, “
Parameter Selection for Diagnosing a Gas-Turbine's Performance-Deterioration
,”
Appl. Energy
,
73
(
1
), pp.
25
46
.10.1016/S0306-2619(02)00042-9
5.
Razak
,
A. M. Y.
,
2007
,
Industrial Gas Turbines: Performance and Operability
,
CRC Press
,
Boca Raton, FL
.
6.
Ntantis
,
E.
,
2008
, “
Capability Expansion of Non-Linear Gas Path Analysis
,” Ph.D. thesis, Cranfield University, Bedford, UK.
7.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.10.1115/1.1340629
8.
Ogaji
,
S. O. T.
, and
Singh
,
R.
,
2003
, “
Advanced Engine Diagnostics Using Artificial Neural Networks
,”
Appl. Soft Comput.
,
3
(
3
), pp.
259
271
.10.1016/S1568-4946(03)00038-3
9.
Lakshminarasimha
,
A. N.
,
Boyce
,
M. P.
, and
Meher-Homji
,
C. B.
,
1994
, “
Modelling and Analysis of Gas Turbine Performance Deterioration
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
46
52
.10.1115/1.2906808
10.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Singh
,
D.
,
1998
, “
Modelling of Compressor Performance Deterioration Due to Erosion
,”
Int. J. Rotating Mach.
,
4
(
4
), pp.
243
248
.10.1155/S1023621X98000207
11.
Doel
,
D.
,
1994
, “
Temper—A Gas-Path Analysis Tool for Commercial Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
82
90
.10.1115/1.2906813
12.
Yoon
,
J. E.
,
Lee
,
J. J.
,
Kim
,
T. S.
, and
Sohn
,
J. L.
,
2008
, “
Analysis of Performance Deterioration of a Micro Gas Turbine and the Use of Neural Network for Predicting Deteriorated Component Characteristics
,”
J. Mech. Sci. Technol.
,
22
(
12
), pp.
2516
2525
.10.1007/s12206-008-0808-8
13.
Kamunge
,
D.
,
2011
, “
A Non-Linear Weighted Least Squares Gas Turbine Diagnostic Approach and Multi-Fuel Performance Simulation
,” Ph.D. thesis, School of Engineering, Cranfield University, Bedford, UK.
14.
Salar
,
A.
,
Sedigh
,
A. K.
,
Hosseini
,
S. M.
, and
Khaledi
,
H.
,
2011
, “
A Hybrid EKF-Fuzzy Approach to Fault Detection and Isolation of Industrial Gas Turbines
,”
ASME
Paper No. GT2011-45878.10.1115/GT2011-45878
15.
Horlock
,
J. H.
,
2007
,
Advanced Gas Turbine Cycles
,
Krieger Publishing Company
,
Malabar, FL
.
16.
Zwebek
,
A.
,
2002
, “
Combined Cycle Performance Deterioration Analysis
,” Ph.D. thesis, Cranfield University, Bedford, UK.
17.
Boyce
,
M. P.
, and
Gonzalez
,
F.
,
2005
, “
A Study of On-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.10.1115/1.2181180
18.
Williams
,
L. J.
,
1981
, “
The Optimisation of Time Between Overhauls for Gas Turbine Compressor Units
,”
4th Symposium of Gas Turbine Operations and Maintenance
, Toronto, Canada, September 21–22.
19.
Meher-Homji
,
C. B.
,
Boyce
,
M. P.
,
Lakshminarasimha
,
A. N.
,
Whitten
,
J. A.
, and
Meher-Homji
,
F. J.
,
1993
, “
Condition Monitoring and Diagnostic Approaches for Advanced Gas Turbines
,”
ASME Cogen Turbo Power, 7th Congress and Exposition on Gas Turbine in Cogeneration and Utility
, Bournemouth, UK, September 21–23, Vol. 8, pp.
347
355
.
20.
Marinai
,
L.
,
2004
, “
Gas-Path Diagnostics and Prognostics for Aero-Engines Using Fuzzy Logic and Time Series Analysis
,” Ph.D. thesis, Cranfield University, Bedford, UK.
21.
Kurz
,
R.
, and
Brun
,
K.
,
2007
, “
Gas Turbine Tutorial—Maintenance and Operating Practices Effects on Degradation and Life
,”
36th Turbomachinery Symposium
, Houston, TX, September 10–13, pp. 157–172.
22.
Aretakis
,
N.
,
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2011
, “
Performance Model ‘Zooming’ for In-Depth Component Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031602
.10.1115/1.4002042
23.
Basendwah
,
A. A.
,
Pilidis
,
P.
, and
Li
,
Y. G.
,
2006
, “
Turbine Off-Line Water Wash Optimization Approach for Power Generation
,”
ASME
Paper No. GT2006-90244.10.1115/GT2006-90244
24.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062401
.10.1115/1.3097135
25.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Influence of Blade Deterioration on Compressor and Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032401
.10.1115/1.4000248
26.
Zwebek
,
A. I.
, and
Pilidis
,
P.
,
2004
, “
Degradation Effects on Combined Cycle Power Plant Performance—Part III: Gas and Steam Turbine Component Degradation Effects
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
306
315
.10.1115/1.1639007
27.
Ganguli
,
R.
,
2003
, “
Application of Fuzzy Logic for Fault Isolation of Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
617
623
.10.1115/1.1470481
28.
Bechini
,
G.
,
2007
, “
Performance Diagnostics and Measurement Selection for On-Line Monitoring of Gas Turbine Engines
,” Ph.D. Thesis, Cranfield University, Bedford, UK.
29.
Zaita
,
A. V.
,
Buley
,
G.
, and
Karlsons
,
G.
,
1998
, “
Performance Deterioration Modelling in Aircraft Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
344
349
.10.1115/1.2818128
30.
Saravanamuttoo
,
H. I. H.
, and
Lakshminarasimha
,
A. N.
,
1985
, “
A Preliminary Assessment of Compressor Fouling
,”
Gas Turbine Conference and Exhibit
, Houston, TX, March 17–21, ASME Paper No. 85-GT-153.
31.
Spakovszky
,
Z. S.
,
Gertz
,
J. B.
,
Paduano
,
J. D.
,
Epstein
,
A. H.
,
Sharma
,
O. P.
, and
Greitzer
,
E. M.
,
1999
, “
Influence of Compressor Deterioration on Engine Dynamic Behavior and Transient Stall-Margin
,”
ASME J. Turbomach.
,
122
(
3
), pp.
477
484
.10.1115/1.1303817
32.
Batcho
,
P. F.
,
Moller
,
J. C.
,
Padova
,
C.
, and
Dunn
,
M. G.
,
1987
, “
Interpretation of Gas Turbine Response Due to Dust Ingestion
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
344
352
.10.1115/1.3240046
33.
Siemens
,
2005
, “
SGT-600 Industrial Gas Turbine
,” Siemens Industrial Turbomachinery, Inc., Duisburg, Germany.
34.
Tabakoff
,
W.
,
Lakshminarasimha
,
A. N.
, and
Pasin
,
M.
,
1990
, “
Simulation of Compressor Performance Deterioration Due to Erosion
,”
ASME J. Turbomach
,
112
(
1
), pp.
78
83
.10.1115/1.2927424
35.
Joly
,
R. B.
,
Ogaji
,
S. O. T.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2004
, “
Gas-Turbine Diagnostics Using Artificial Neural-Networks for a High Bypass Ratio Military Turbofan Engine
,”
J. Appl. Energy
,
78
(
4
), pp.
397
418
.10.1016/j.apenergy.2003.10.002
36.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
,
1990
, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
(
2
), pp.
168
175
.10.1115/1.2906157
37.
Bettocchi
,
R.
, and
Spina
,
P. R.
,
1999
, “
Diagnosis of Gas Turbine Operating Conditions by Means of the Inverse Cycle Calculation
,”
ASME Turbo Expo
, Indianpolis, IN, June 7–10, ASME Paper No. 99-GT-185.
38.
Gulati
,
A.
,
Zedda
,
M.
, and
Singh
,
R.
,
2000
, “
Gas Turbine Engine and Sensor Multiple Operating Point Analysis Using Optimization Techniques
,”
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Huntsville, AL, July 17–19,
AIAA
Paper No. 2000-3716.10.2514/6.2000-3716
39.
Torella
,
G.
, and
Blasi
,
L.
,
2000
, “
Artificial Intelligence Tools for Gas Turbine Engine Utilisation Problems
,”
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Huntsville, AL, July 17–19,
AIAA
Paper No. 2000-3502.10.2514/6.2000-3502
40.
Aretakis
,
N.
,
Mathioudakis
,
K.
, and
Stamatis
,
A.
,
2003
, “
Non-Linear Engine Component Fault Diagnosis From a Limited Number of Measurements Using a Combinatorial Approach
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
642
650
.10.1115/1.1582494
41.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2005
, “
Implementation of Stochastic Methods for Industrial Gas Turbine Fault Diagnosis
,”
ASME
Paper No. GT2005-68739.10.1115/GT2005-68739
You do not currently have access to this content.