For a magnetically levitated flexible rotor (MLFR), the amount of residual imbalance not only generates undesired vibrations, but also results in excessive bending, which may cause it hit to the auxiliary bearings. Thus, balancing below the critical speed is essential for the MLFR to prevent the impact. This paper proposes a balancing method of high precision and high efficiency, basing on virtual trial-weights. First, to reduce the computed error of rotor's mode shapes, a synchronous notch filter is inserted into the active magnetic bearing (AMB) controller, achieving a free support status. Then, AMBs provide the rotor with the synchronous electromagnetic forces (SEFs) to simulate the trial-weights. The SEFs with the initial angles varying from 0 deg to 360 deg in the rotational frame system result in continuous changes in the MLFR's deflection. Last, correction masses are calculated according to the changes. Compared to the trail-weights method, the new method needs not test-runs, which improves the balancing efficiency. Compared to the no trail-weights method, the new method does not require a precise model of the rotor-bearing system, which is difficult to acquire in the real system. Experiment results show that the novel method can reduce the residual imbalance effectively and accurately.

References

1.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearing: Theory Design and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
.
2.
Ren
,
Y.
, and
Fang
,
J. C.
,
2012
, “
Current-Sensing Resistor Design to Include Current Derivative in PWM H-Bridge Unipolar Switching Power Amplifiers for Magnetic Bearings
,”
IEEE Trans. Ind. Electron. Control Instrum.
,
59
(
12
), pp.
4590
4600
.10.1109/TIE.2011.2179277
3.
Sahinkaya
,
M. N.
,
Abulrub
,
A. H. G.
,
Burrows
,
C. R.
, and
Keogh
,
P. S.
,
2010
, “
A Multiobjective Adaptive Controller for Magnetic Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122503
.10.1115/1.4001060
4.
Zheng
,
S. Q.
, and
Han
,
B. C.
,
2013
, “
Investigations of an Integrated Angular Velocity Measurement and Attitude Control System for Spacecraft Using Magnetically Suspended Double-Gimbal CMGs
,”
Adv. Space Res.
,
51
(
12
), pp.
2216
2228
.10.1016/j.asr.2013.01.015
5.
Couzon
,
P. Y.
, and
Hagopian
,
J. D.
,
2007
, “
Neuro-Fuzzy Active Control of Rotor Suspended on Active Magnetic Bearing
,”
J. Vib. Control
,
13
(
4
), pp.
365
384
.10.1177/1077546307074578
6.
Erikki
,
L.
, and
Ville
,
T.
,
2009
, “
A Supercritical 250 kW Industrial Air Compressor Prototype
,”
J. Syst. Design Dyn.
,
3
(
4
), pp.
639
650
.10.1299/jsdd.3.639
7.
Tang
,
J. Q.
,
Liu
,
B.
,
Fang
,
J. C.
, and
Ge
,
S. Z.
,
2012
, “
Suppression of Vibration Caused by Residual Unbalance of Rotor for Magnetically Suspended Flywheel
,”
J. Vib. Control
,
19
(
13
), pp.
1962
1979
.10.1177/1077546312449643
8.
Burrows
,
C. R.
,
Keogh
,
P. S.
, and
Sahinkaya
,
M. N.
,
2009
, “
Progress Towards Smart Rotating Machinery Through the Use of Active Bearings
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
223
(
12
), pp.
2849
2859
.10.1243/09544062JMES1487
9.
Parkinson
,
A. G.
,
1991
, “
Balancing of Rotating Machinery
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
205
(
1
), pp.
53
66
.10.1243/PIME_PROC_1991_205_091_02
10.
Jiffri
,
S.
,
Garvey
,
S. D.
, and
Rix
,
A. I. J.
,
2009
, “
Enriching Balancing Information Using the Unbalance Covariance Matrix
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
223
(
8
), pp.
1815
1826
.10.1243/09544062JMES1181
11.
Jørgen
,
T.
,
2003
, “
Jørgen W. Lund: Theories Versus Tests, Part 1: Balancing and Response of Flexible Rotors
,”
ASME Vib. Acoust.
,
125
(
4
), pp.
482
488
.10.1115/1.1606693
12.
Untaroiu
,
C. D.
,
Allaire
,
P. E.
, and
Foiles
,
W. C.
,
2008
, “
Balancing of Flexible Rotors Using Convex Optimization Techniques: Optimum Min-Max LMI Influence Coefficient Balancing
,”
ASME Vib. Acoust.
,
130
(
2
), p.
021006
.10.1115/1.2730535
13.
Kang
,
Y.
,
Lin
,
T. W.
,
Chang
,
Y. Y.
,
Chang
,
Y. P.
, and
Wang
,
C. C.
,
2008
, “
Optimal Balancing of Flexible Rotors by Minimizing the Condition Number of Influence Coefficients
,”
Mech. Mach. Theory
,
43
(
7
), pp.
891
908
.10.1016/j.mechmachtheory.2007.06.005
14.
Bishop
,
R. E. D.
, and
Gladwell
,
G. M. L.
,
1959
, “
The Vibration and Balancing of an Unbalanced Flexible Rotor
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
1
(
1
), pp.
66
77
.10.1243/JMES_JOUR_1959_001_010_02
15.
Zhang
,
Y.
,
Mei
,
X. S.
,
Shao
,
M. P.
, and
Xu
,
M. X.
,
2013
, “
An Improved Holospectrum-Based Balancing Method for Rotor Systems With Anisotropic Stiffness
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
227
(
2
), pp.
246
260
.10.1177/0954406212447521
16.
Hundal
,
M. S.
, and
Harker
,
R. J.
,
1966
, “
Balancing of Flexible Rotors Having Arbitrary Mass and Stiffness Distributions
,”
ASME J. Manuf. Sci. Eng.
,
88
(
2
), pp.
217
233
.10.1115/1.3670934
17.
Xu
,
B. G.
, and
Qu
,
L. S.
,
2001
, “
A New Practical Modal Method for Rotor Balancing
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
215
(
2
), pp.
179
189
.10.1243/0954406011520607
18.
El-Shafei
,
A.
,
El-Kabbany
,
A. S.
, and
Younan
,
A. A.
,
2004
, “
Rotor Balancing Without Trial Weights
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
604
609
.10.1115/1.1762903
19.
Saldarriaga
,
M. V.
,
Steffen
,
V.
,
Hagopian
,
J. D.
, and
Mahfoud
,
J.
,
2011
, “
On the Balancing of Flexible Rotating Machines by Using an Inverse Problem Approach
,”
J. Vib. Control
,
17
(
7
), pp.
1021
1033
.10.1177/1077546310370669
20.
Li
,
X. F.
,
Zheng
,
L. X.
, and
Liu
,
Z. X.
,
2013
, “
Balancing of Flexible Rotors Without Trial Weights Based on Finite Element Modal Analysis
,”
J. Vib. Control
,
19
(
3
), pp.
461
470
.10.1177/1077546311433916
21.
Herzog
,
R.
,
Buhler
,
P.
,
Gahler
,
C.
, and
Larsonneur
,
R.
,
1996
, “
Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Tech.
,
4
(
5
), pp.
580
586
.10.1109/87.531924
You do not currently have access to this content.