In this paper the problem of fault diagnosis in an aircraft jet engine is investigated by using an intelligent-based methodology. The proposed fault detection and isolation (FDI) scheme is based on the multiple model approach and utilizes autoassociative neural networks (AANNs). This methodology consists of a bank of AANNs and provides a novel integrated solution to the problem of both sensor and component fault detection and isolation even though possibly both engine and sensor faults may occur concurrently. Moreover, the proposed algorithm can be used for sensor data validation and correction as the first step for health monitoring of jet engines. We have also presented a comparison between our proposed approach and another commonly used neural network scheme known as dynamic neural networks to demonstrate the advantages and capabilities of our approach. Various simulations are carried out to demonstrate the performance capabilities of our proposed fault detection and isolation scheme.

References

1.
Zedda
,
M.
, and
Singh
,
R.
,
2001
, “
Neural-Network-Based Sensor Validation for Gas Turbine Test Bed Analysis
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng
,
215
(
1
), pp. 47–56.10.1243/0959651011539196
2.
Kiyak
,
E.
,
Kahvecioglu
,
A.
, and
Caliskan
,
F.
,
2011
, “
Aircraft Sensor and Actuator Fault Detection, Isolation, and Accommodation
,”
J. Aerosp. Eng.
,
24
(
1
), pp.
46–58
.10.1061/(ASCE)AS.1943-5525.0000052
3.
Sarkar
,
S.
,
Jin
,
X.
, and
Ray
,
A.
,
2011
, “
Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements
,”
ASME Eng. Gas Turbines Power
,
133
(
8
), p.
081602
.10.1115/1.4002877
4.
Sheng
,
C. G. W.
,
Napolitano
,
M.
, and
Fravolini
,
M.
,
2002
, “
Online Learning RBF Neural Networks for Sensor Validation
,”
AIAA Guidance Navigation and Control Conference
, Monterey, CA, August 5–8,
AIAA
Paper No. 2002-4996.10.2514/6.2002-4996
5.
Samy
, I
.
,
Postlethwaite
, I
.
, and
Gu
,
D.
,
2010
, “
A Comparative Study of NN and EKF Based SFDA Schemes With Application to a Nonlinear UAV Model
,”
Int. J. Control
,
83
(5), pp.
1025
1043
.10.1080/00207170903552059
6.
Neppach
,
C.
, and
Casdorph
, V
.
,
1995
, “
Sensor Failure Detection, Identification and Accommodation in a System Without Sensor Redundancy
,” 33rd Aerospace Sciences Meeting & Exhibit, January 1995, Reno, NV, AIAA Paper No. 95-0011.
7.
Palm
,
T.
,
Fast
,
M.
, and
Thern
,
M.
,
2011
, “
Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks
,”
Appl. Energy
,
88
(11), pp.
3898
3904
.10.1016/j.apenergy.2011.03.047
8.
Joly
,
R.
,
Ogaji
,
S.
,
Singh
,
R.
, and
Probert
,
S.
,
2004
, “
Gas-Turbine Diagnostics Using Artificial Neural-Networks for a High Bypass Ratio Military Turbofan Engine
,”
Appl. Energy
,
78
(
4
), pp.
397
418
.10.1016/j.apenergy.2003.10.002
9.
Napolitano
,
M.
, and
Windon
,
D.
,
1996
, “
A Comparison Between Kalman Filter and Neural Network Approaches for Sensor Validation
,”
AIAA Guidance, Navigation and Control Conference
, San Diego, CA, July 29–31,
AIAA
Paper No. 96-3894.10.2514/6.1996-3894
10.
An
,
Y.
,
1998
, “
A Design of Fault Tolerant Flight Control Systems for Sensor and Actuator Failures Using On-Line Learning Neural Networks
,” Ph.D. thesis, West Virginia University, Morgantown, WV.
11.
Ogaji
,
S.
,
Singh
,
R.
, and
Probert
,
S.
,
2002
, “
Multiple-Sensor Fault-Diagnoses for a 2-Shaft Stationary Gas-Turbine
,”
Appl. Energy
,
71
(
4
), pp.
321
339
.10.1016/S0306-2619(02)00015-6
12.
Ogaji
,
S.
,
Sampath
,
S.
,
Marinai
,
L.
,
Singh
,
R.
, and
Probert
,
S.
,
2005
, “
Evolution Strategy for Gas-Turbine Fault-Diagnoses
,”
Appl. Energy
,
81
(
2
), pp.
222
230
.10.1016/j.apenergy.2004.07.003
13.
Marinai
,
L.
,
Probert
,
D.
, and
Singh
,
R.
,
2004
, “
Prospects for Aero Gas-Turbine Diagnostics: A Review
,”
Appl. Energy
,
79
(
1
), pp.
109
126
.10.1016/j.apenergy.2003.10.005
14.
Fast
,
M.
,
Assadi
,
M.
, and
De
,
S.
,
2009
, “
Development and Multi-Utility of an ANN Model for an Industrial Gas Turbine
,”
Appl. Energy
,
86
(1), pp.
9
17
.10.1016/j.apenergy.2008.03.018
15.
Rasaienia
,
A.
,
Moshiri
,
B.
, and
Moezzi
,
M.
,
2013
, “
Feature-Based Fault Detection of Industrial Gas Turbines Using Neural Networks
,”
Turkish J. Elec. Eng. Comput. Sci.
,
21
, pp.
1340
1350
.10.3906/elk-1110-71
16.
Ganguli
,
R.
,
2013
,
Gas Turbine Diagnostics, Signal Processing and Fault Isolation
,
CRC
,
Boca Raton, FL
.
17.
Gupta
,
S.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
,
2008
, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 1: Underlying Concept
,”
J. Aerosp. Eng., Part G
,
222
(3), pp.
307
318
.10.1243/09544100JAERO311
18.
Sarkar
,
S.
,
Yasar
,
M.
,
Gupta
,
S.
,
Ray
,
A.
, and
Mukherjee
,
K.
,
2008
, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 2: Validation on a Simulation Test Bed
,”
J. Aerosp. Eng. Part G
,
222
(3), pp.
319
330
.10.1243/09544100JAERO312
19.
Palme
,
T.
,
Fast
,
M.
, and
Thern
,
M.
,
2011
, “
Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks
,”
Thermal Power Eng.
,
88
(
11
), pp.
3898
3904
.10.1016/j.apenergy.2011.03.047
20.
Ayoubi
,
M.
,
1994
, “
Fault Diagnosis With Dynamic Neural Structure and Application to a Turbo Charger
,” International Symposium on Fault Detection, Supervision and Safety for Technical Proceesses (SAFEPROCESS’94), Espoo, Finland, June 13–16, pp. 618–623.
21.
Mohammadi
,
R.
,
Naderi
,
E.
,
Khorasani
,
K.
, and
Hashtrudi-Zad
,
S.
,
2010
, “
Fault Diagnosis of Gas Turbine Engines by Using Dynamic Neural Networks
,”
ASME
Paper No. GT2010-23586.10.1115/GT2010-23586
22.
Patan
,
K.
, and
Parisini
,
T.
,
2005
, “
Identification of Neural Dynamic Models for Fault Detection and Isolation: The Case of a Real Sugar Evaporation Process
,”
J. Process Control
,
15
(
1
), pp.
67
79
.10.1016/j.jprocont.2004.04.001
23.
Yazdizadeh
,
A.
, and
Khorasani
,
K.
,
1997
, “
Identification of a Class of Nonlinear Systems Using Dynamic Neural Network Structures
,”
International Conference on Neural Networks
, Houston, TX, June 9–12, pp.
194
198
.10.1109/ICNN.1997.611663
24.
Yazdizadeh
,
A.
, and
Khorasani
,
K.
,
2002
, “
Adaptive Time Delay Neural Network Structures for Nonlinear System Identification
,”
Neurocomputing
,
47
(
1–4
), pp.
207
240
.10.1016/S0925-2312(01)00589-6
25.
Tayarani-Bathaie
,
S. S.
,
Sadough Vanini
,
Z. N.
, and
Khorasani
,
K.
,
2013
, “
Dynamic Neural Network-Based Fault Diagnosis of Jet Engines
,”
Neurocompting
,
125
, pp. 153–165.10.1016/j.neucom.2012.06.050
26.
Sadough Vanini
,
Z. N.
,
Khorasani
,
K.
, and
Meskin
,
N.
,
2013
, “
Fault Detection and Isolation of a Dual Spool Gas Turbine Engine Using Dynamic Neural Networks and Multiple Model Approach
,”
Inform. Sci.
,
259
, pp. 234–251.10.1016/ j.ins.2013.05.032
27.
Meskin
,
N.
,
Naderi
,
E.
, and
Khorasani
,
K.
,
2013
, “
A Multiple Model-Based Approach for Fault Diagnosis of Jet Engines
,”
IEEE Trans. Control Syst. Technol.
,
21
(
1
), pp.
254
262
.10.1109/TCST.2011.2177981
28.
Naderi
,
E.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2012
, “
Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach
,”
ASME J. Eng. Gas Turbines Power
,
134
(1), p.
011602
.10.1115/1.4004152
29.
Naderi
,
E.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2010
, “
Fault Diagnosis of Jet Engine by Using a Multiple Model-Based Approach
,”
ASME
Paper No. GT2010-23442.10.1115/GT2010-23442
30.
Hines
,
J.
, and
Uhrig
,
R.
,
1998
, “
Use of Autoassociative Neural Networks for Signal Validation
,”
J. Intell. Robotic Syst.
,
21
(2) pp.
143
154
.10.1023/A:1007981322574
31.
Guo-Jian
,
H.
,
Gui-Xiong
,
L.
,
Geng-Xin
,
C.
, and
Tie-Qun
,
C.
,
2010
, “
Self-Recovery Method Based on Auto-Associative Neural Network for Intelligent Sensors
,”
8th World Congress on Intelligent Control and Automation
(
WCICA
), Jinan, China, July 7–9, pp. 6918–6922.10.1109/WCICA.2010.5554231
32.
Najafi
,
M.
,
Culp
,
C.
, and
Langari
,
R.
,
2004
, “
Performance Study of Enhanced Auto-Associative Neural Networks for Sensor Fault Detection
,” 4th International Conference for Enhanced Building Operations, Paris, October 18–19.
33.
Guo
,
T.
,
Mattern
,
D.
,
Jaw
,
L.
, and
Chen
,
C.
,
2003
, “
Model-Based Sensor Validation for a Turbofan Engine Using Autoassociative Neural Networks
,”
Int. J. Smart Eng. Syst. Design
,
5
(
1
), pp.
21
32
.10.1080/10255810305035
34.
Kramer
,
M. A.
,
1998
, “
Autoassociative Neural Networks
,”
Comput. Chem. Eng.
,
16
(
4
), pp.
313
328
.10.1016/0098-1354(92)80051-A
35.
Meskin
,
N.
,
Naderi
,
E.
, and
Khorasani
,
K.
,
2010
, “
Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach
,”
ASME
Paper No. GT2010-23442.10.1115/GT2010-23442
36.
Merrington
,
G. L.
,
1994
, “
Fault Diagnosis in Gas Turbines Using a Model-Based Technique
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
374
380
.10.1115/1.2906830
37.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2006
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in SIMULINK
,”
ASME J. Eng. Gas Turbines Power
,
128
(3), pp.
506
517
.10.1115/1.2132383
38.
Meskin
,
N.
,
Naderi
,
E.
, and
Khorasani
,
K.
,
2010
, “
Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach
,”
ASME
Paper No. GT2011-45143.10.1115/GT2011-45143
39.
Visser
,
W.
,
Kogenhop
,
O.
, and
Oostveen
,
M.
,
2004
, “
A Generic Approach for Gas Turbine Adaptive Modeling
,”
ASME J. Eng. Gas Turbines Power
,
126
(2), pp.
334
341
.10.1115/1.1691443
40.
PROOSIS,
2014
, “
Ecosimpro and PROOSIS Simulation Tools
,” EA Internacional, Madrid, Spain, http://www.ecosimpro.com/
41.
Lu
,
P.
, and
Hsu
,
T.
,
2002
, “
Application of Autoassociative Neural Network on Gas-Path Sensor Data Validation
,”
J. Propul. Power
,
18
(
4
), pp.
879
888
.10.2514/2.6013
You do not currently have access to this content.