The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains—typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, which can be of hundreds species even if hydrocarbon families are lumped into representative compounds and, thus, modeled with nonelementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. central processing unit (CPU) times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ordinary differential equation (ODE) system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the computational fluid dynamics (CFD) cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box- constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multicomponent diesel fuel surrogates and different engine grids. The results show that significant CPU time reductions, of about 1 order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.

References

References
1.
Reitz
,
R. D.
,
2013
, “
Directions in Internal Combustion Engine Research
,”
Combust. Flame
,
160
(
1
), pp.
1
8
.10.1016/j.combustflame.2012.11.002
2.
Gallant
,
T.
,
Franz
,
J.
,
Alnajjar
,
M.
,
Storey
,
J.
,
Lewis
,
S. A.
,
Slunder
,
C. S.
,
Cannella
,
W. J.
,
Fairbridge
,
C.
,
Hager
,
D.
,
Dettman
,
H.
,
Luecke
,
J.
,
Ratcliff
,
M. A.
, and
Zigler
,
B. T.
,
2009
, “
Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties
,”
SAE
Technical Paper No. 2009-01-2769.10.4271/2009-01-2769
3.
Pudupakkam
,
K. V.
,
Liang
,
L.
,
Naik
,
C. V.
,
Meeks
,
E.
,
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2011
, “
Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts
,”
SAE
Technical Paper No. 2011-01-0895.10.4271/2011-01-0895
4.
Xingcai
,
L.
,
Han
,
D.
, and
Huang
,
Z.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
741
783
.10.1016/j.pecs.2011.03.003
5.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2011
, “
A Combustion Model for IC Engine Combustion Simulations With Multi-Component Fuels
,”
Combust. Flame
,
158
(
1
), pp.
69
90
.10.1016/j.combustflame.2010.07.019
6.
Krishnasamy
,
A.
,
Ra
,
Y.
,
Reitz
,
R. D.
, and
Bunting
,
B. C.
,
2011
, “
Surrogate Model Development for Fuels for Advanced Combustion Engines
,”
Energy Fuels
,
25
(
4
), pp.
1474
1484
.10.1021/ef101719a
7.
Krishnasamy
,
A.
,
Ra
,
Y.
,
Reitz
,
R. D.
, and
Bunting
,
B.
,
2013
, “
Combustion Simulations of the Fuels for Advanced Combustion Engines in a Homogeneous Charge Compression Ignition Engine
,”
Int. J. Eng. Res.
,
14
(
2
), pp.
191
208
.10.1177/1468087412454066
8.
Krishnasamy
,
A.
,
Reitz
,
R. D.
,
Willems
,
W.
, and
Kurtz
E.
,
2013
, “
Surrogate Diesel Fuel Models for Low Temperature Combustion
,”
SAE
Technical Paper No. 2013-01-1092.10.4271/2013-01-1092
9.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Towards Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
192
215
.10.1016/j.pecs.2008.10.002
10.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.10.1016/j.proci.2004.08.145
11.
Perini
,
F.
,
Cantore
,
G.
, and
Reitz
,
R. D.
,
2011
, “
An Analysis on Time Scale Separation for Internal Combustion Engine Simulations With Detailed Chemistry
,”
SAE
Technical Paper No. 2011-24-0028.10.4271/2011-24-0028
12.
Brown
,
P. N.
,
Byrne
,
G. D.
, and
Hindmarsh
A. C.
,
1989
, “
VODE: A Variable-Coefficient ODE Solver
,”
SIAM J. Sci. Stat. Comput.
,
10
(
5
), pp.
1038
1051
.10.1137/0910062
13.
Radhakrishnan
,
K.
, and
Hindmarsh
,
A.
,
1993
, “
Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-ID-113855.
14.
Amsden
,
A. A.
,
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1987
, “
The KIVA-II Computer Program for Transient Multidimensional Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report No. LA-UR–87-3015.
15.
Amsden
,
A. A.
,
1997
, “
KIVA-3V, A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report No. LA-13608-MS.
16.
Torres
,
D. J.
, and
Trujillo
,
M. F.
,
2006
, “
KIVA-4: An Unstructured ALE Code for Compressible Gas Flows With Sprays
,”
J. Comput. Phys.
,
219
(
2
), pp.
943
975
.10.1016/j.jcp.2006.07.006
17.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2012
, “
An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling With Large Reaction Mechanisms
,”
Energy Fuels
,
26
(
8
), pp.
4084
4822
.10.1021/ef300747n
18.
Perini
,
F.
,
2013
, “
High-Dimensional, Unsupervised Cell Clustering for Computationally Efficient Engine Simulations With Detailed Combustion Chemistry
,”
Fuel
,
106
, pp.
344
356
.10.1016/j.fuel.2012.11.015
19.
Patel
,
A.
,
Kong
,
S.-C.
, and
Reitz
,
R. D.
,
2004
, “
Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations
,”
SAE
Technical Paper No. 2004-01-0558.10.4271/2004-01-0558
20.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.10.1016/j.combustflame.2008.05.002
21.
Seiser
,
H.
,
Pitsch
,
H.
,
Seshadri
,
K.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2000
, “
Extinction and Autoignition of n-Heptane in Counterflow Configuration
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2029
2037
.10.1016/S0082-0784(00)80610-4
22.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.10.1016/S0010-2180(01)00373-X
23.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2008
, “
Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate
,”
Combust. Flame
,
154
(
3
), pp.
507
528
.10.1016/j.combustflame.2008.03.003
24.
Goodwin
,
D. G.
,
2003
, “
Cantera—An Open-Source, Extensible Software Suite for CVD Process Simulation
,”
Chemical Vapor Deposition XVI and EUROCVD
14, Paris, April 27–May 2.
25.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND89-8009.
26.
Perini
,
F.
,
Galligani
,
E.
,
Cantore
,
G.
, and
Reitz
,
R. D.
,
2012
, “
Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations With Comprehensive Reaction Mechanisms
,”
SAE
Technical Paper No. 2012-01-1974.10.4271/2012-01-1974
27.
Kong
S.-C.
, and
Reitz
,
R. D.
,
2002
, “
Application of Detailed Chemistry and CFD for Predicting Direct Injection HCCI Engine Combustion and Emissions
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
663
669
.10.1016/S1540-7489(02)80085-2
28.
Kong
,
S.-C.
, and
Reitz
,
R. D.
,
2002
, “
Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
702
707
.10.1115/1.1413766
29.
Kokjohn
,
S.
, and
Reitz
,
R. D.
,
2011
, “
Investigation of the Roles of Flame Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional and Low Temperature Diesel Combustion
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102805
.10.1115/1.4002948
30.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Eng. Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
31.
Liang
,
L.
,
Stevens
,
J. G.
, and
Farrell
,
J. T.
,
2009
, “
A Dynamic Multi-Zone Partitioning Scheme for Solving Detailed Chemical Kinetics in Reactive Flow Computations
,”
Combust. Sci. Technol.
,
181
(
11
), pp.
1345
1371
.10.1080/00102200903190836
32.
Barths
,
H.
,
Felsch
,
C.
, and
Peters
,
N.
,
2009
, “
Mixing Models for the Two-Way-Coupling of CFD Codes and Zero-Dimensional Multi-Zone Codes to Model HCCI Combustion
,”
Combust. Flame
,
156
(
1
), pp.
130
139
.10.1016/j.combustflame.2008.09.001
33.
Shi
,
Y.
,
Hessel
,
R. P.
, and
Reitz
,
R. D.
,
2009
, “
An Adaptive Multi-Grid Chemistry (AMC) Model for Efficient Simulation of HCCI and DI Engine Combustion
,”
Combust. Theory Model.
,
13
(
1
), pp.
83
104
.10.1080/13647830802401101
34.
Puduppakkam
,
K. V.
,
Liang
,
L.
,
Naik
,
C. V.
,
Meeks
,
E.
,
Kokjohn
,
S. L.
, and
Reitz
,
R .D.
,
2011
, “
Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1127
1149
.10.4271/2011-01-0895
35.
Aggarwal
,
C.
,
Hinneburg
,
A.
, and
Keim
,
D.
,
2001
, “
On the Surprising Behavior of Distance Metrics in High Dimensional Space
,”
Database Theory ICDT 2001
(Lecture Notes in Computer Science),
Springer
,
New York
, pp.
420
434
.
36.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm AS 136: A K-Means Clustering Algorithm
,”
J. R. Stat. Soc., Ser. C: Appl. Stat.
,
28
(
1
), pp.
100
108
.10.2307/2346830
37.
Deraad
,
S.
,
Fulton
,
B.
,
Gryglak
,
A.
,
Hallgren
,
B.
,
Hudson
,
A.
,
Ives
,
D.
,
Morgan
,
P.
,
Styron
,
J.
,
Waszczenko
,
E.
, and
Cattermole
,
I.
,
2010
, “
The New Ford 6.7L V-8 Turbocharged Diesel Engine
,”
SAE
Technical Paper No. 2010-01-1101.10.4271/2010-01-1101
38.
Styron
,
J.
,
Baldwin
,
B.
,
Fulton
,
B.
,
Ives
,
D.
, and
Ramanathan
S.
,
2011
, “
Ford 2011 6.7L Power Stroke Diesel Engine Combustion System Development
,”
SAE
Technical Paper No. 2011-01-0415.10.4271/2011-01-0415
39.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
40.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomiz. Sprays
,
9
(6
), pp.
623
650
.
41.
Abani
,
N.
,
Munnannur
,
A.
, and
Reitz
,
R. D.
,
2008
, “
Reduction of Numerical Parameter Dependencies in Diesel Spray Models
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032809
.10.1115/1.2830867
42.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE
Paper No. 2000-01-0271.10.4271/2000-01-0271
43.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ɛ Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
44.
Shi
,
Y.
,
Liang
,
L.
,
Ge
,
H.-W.
, and
Reitz
,
R. D.
,
2010
, “
Acceleration of the Chemistry Solver for Modeling DI Engine Combustion Using Dynamic Adaptive Chemistry (DAC) Schemes
”,
Combust. Theory Model.
,
14
(
1
), pp.
69
89
.10.1080/13647830903548834
45.
Lim
,
J. H.
,
Perini
,
F.
, and
Reitz
,
R. D.
,
2013
, “
High Load (21 bar IMEP) Dual Fuel RCCI Combustion Optimization
,”
223rd International Multidimensional Engine Modeling User's Group Meeting 2013
,
Detroit, MI
, April 15.
You do not currently have access to this content.