The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains—typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, which can be of hundreds species even if hydrocarbon families are lumped into representative compounds and, thus, modeled with nonelementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. central processing unit (CPU) times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ordinary differential equation (ODE) system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the computational fluid dynamics (CFD) cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box- constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multicomponent diesel fuel surrogates and different engine grids. The results show that significant CPU time reductions, of about 1 order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.
Skip Nav Destination
Article navigation
September 2014
Research-Article
Computationally Efficient Simulation of Multicomponent Fuel Combustion Using a Sparse Analytical Jacobian Chemistry Solver and High-Dimensional Clustering
Federico Perini,
Federico Perini
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Search for other works by this author on:
Anand Krishnasamy,
Anand Krishnasamy
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Search for other works by this author on:
Youngchul Ra,
Youngchul Ra
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Search for other works by this author on:
Rolf D. Reitz
Rolf D. Reitz
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Search for other works by this author on:
Federico Perini
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Anand Krishnasamy
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Youngchul Ra
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Rolf D. Reitz
Engine Research Center,
University of Wisconsin-Madison
,1500 Engineering Drive
,Madison, WI 53706
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received February 17, 2014; final manuscript received February 17, 2014; published online May 5, 2014. Editor: David Wisler.
J. Eng. Gas Turbines Power. Sep 2014, 136(9): 091515 (11 pages)
Published Online: May 5, 2014
Article history
Received:
February 17, 2014
Revision Received:
February 17, 2014
Citation
Perini, F., Krishnasamy, A., Ra, Y., and Reitz, R. D. (May 5, 2014). "Computationally Efficient Simulation of Multicomponent Fuel Combustion Using a Sparse Analytical Jacobian Chemistry Solver and High-Dimensional Clustering." ASME. J. Eng. Gas Turbines Power. September 2014; 136(9): 091515. https://doi.org/10.1115/1.4027280
Download citation file:
Get Email Alerts
Cited By
CFD Modeling of Additively Manufactured Extreme Environment Heat Exchangers for Waste Heat Recuperation
J. Eng. Gas Turbines Power
Thickened Flame Model Extension for Dual Gas GT Combustion: Validation Against Single Cup Atmospheric Test
J. Eng. Gas Turbines Power
Development of A Method for Shape Optimization for A Gas Turbine Fuel Injector Design Using Metal-AM
J. Eng. Gas Turbines Power
Related Articles
Steady-State Calibration of a Diesel Engine in Computational Fluid Dynamics Using a Graphical Processing Unit-Based Chemistry Solver
J. Eng. Gas Turbines Power (October,2018)
Development of a Highly Reduced Mechanism for Iso-Octane HCCI Combustion With Targeted Search Algorithm
J. Eng. Gas Turbines Power (July,2008)
A Data-Driven Framework for Computationally Efficient Integration of Chemical Kinetics Using Neural Ordinary Differential Equations
ASME Open J. Engineering (January,2023)
Development of a Semi-implicit Solver for Detailed Chemistry in Internal Combustion Engine Simulations
J. Eng. Gas Turbines Power (January,2007)
Related Proceedings Papers
Related Chapters
Physiology of Human Power Generation
Design of Human Powered Vehicles
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Specification and Implementation of Digital Control Algorithms in Chemistry Automation
Computerized Laboratory Systems