This paper presents an experimental analysis of diesel-ignited propane dual fuel low temperature combustion (LTC) based on performance, emissions, and in-cylinder combustion data from a modern, heavy-duty diesel engine. The engine used for these experiments was a 12.9-liter, six-cylinder, direct injection heavy-duty diesel engine with electronic unit diesel injection pumps, a variable geometry turbocharger, and cooled exhaust gas recirculation (EGR). The experiments were performed with gaseous propane (the primary fuel) fumigated upstream of the turbocharger and diesel (the pilot fuel) injected directly into the cylinders. Results are presented for a range of diesel injection timings (SOIs) from 10 deg BTDC to 50 deg BTDC at a brake mean effective pressure (BMEP) of 5 bar and a constant engine speed of 1500 rpm. The effects of SOI, percent energy substitution (PES) of propane (i.e., replacement of diesel fuel energy with propane), intake boost pressure, and cooled EGR on the dual fuel LTC process were investigated. The approach was to determine the effects of SOI while maximizing the PES of propane. Dual fuel LTC was achieved with very early SOIs (e.g., 50 deg BTDC) coupled with high propane PES (>84%), which yielded near-zero NOx (<0.02 g/kW h) and very low smoke emissions (<0.1 FSN). Increasing the propane PES beyond 84% at the SOI of 50 deg BTDC yielded a high COV of IMEP due to retarded combustion phasing (CA50). Intake boost pressures were increased and EGR rates were decreased to minimize the COV, allowing higher propane PES (∼93%); however, lower fuel conversion efficiencies (FCE) and higher HC and CO emissions were observed.

References

References
1.
U.S. EPA Heavy-Duty Engine Emissions standards
, accessed March 18,
2013
, http://dieselnet.com/standards/
2.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,” SAE Technical Paper No. 970873.
3.
Dockery
,
D. W.
, and
Pope
,
C. A.
,
1994
, “
Acute Respiratory Effects of Particulate Air Pollution
,”
Annu. Rev. Public Health
,
15
, pp.
107
132
.10.1146/annurev.pu.15.050194.000543
4.
Kittelson
,
D. B.
,
1998
, “
Engines and Nanoparticles: A Review
,”
J. Aerosol Sci.
,
29
(
5–6
), pp.
575
588
.10.1016/S0021-8502(97)10037-4
5.
Abd Alla
,
G. H.
,
Soliman
,
H. A.
,
Badr
,
O. A.
, and
Abd Rabbo
,
M. F.
,
2000
, “
Effect of Pilot Fuel Quantity on the Performance of a Dual Fuel Engine
,”
Energy Conversion & Management
,
41
(6), pp.
559
572
.10.1016/S0196-8904(99)00124-7
6.
Stewart
,
J.
,
Clarke
,
A.
, and
Chen
,
R.
,
2007
, “
An Experimental Study of The Dual-Fuel Performance of a Small Compression Ignition Diesel Engine Operating With Three Gaseous Fuels
,”
Proc. IMechE Part D: J. Automobile Engineering
,
221
(
8
), pp.
943
956
.10.1243/09544070JAUTO458
7.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2011
, “
Natural-Gas Fueled Spark-Ignition (SI) and Compression-Ignition (CI) Engine Performance and Emissions
,”
Progress in Energy and Combustion Science
,
37
(
1
), pp.
89
112
.10.1016/j.pecs.2010.04.002
8.
Papagiannakis
,
R. G.
, and
Hountalas
,
D. T.
,
2002
, “
Experimental Investigation Concerning The Effect of Natural Gas Percentage on Performance and Emissions of a DI Dual Fuel Diesel Engine
,”
Appl. Thermal Eng.
,
23
(3), pp.
353
365
.10.1016/S1359-4311(02)00187-4
9.
Karim
,
G. A.
,
2003
, “
Combustion in Gas Fueled Compression: Ignition Engines of the Dual Fuel Type
,”
ASME J. Eng. Gas Turbines and Power
,
125
(3), pp.
827
836
.10.1115/1.1581894
10.
Liu
,
Z.
, and
Karim
,
G. A.
,
1995
, “
Knock Characteristics of a Dual Fuel Engine With Hydrogen Fuel
,”
Int. J. Hydrogen Energy
,
20
(
11
), pp.
919
924
.10.1016/0360-3199(95)00023-7
11.
Polk
,
A. C.
,
Gibson
,
C. M.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2013
, “
Analysis of Ignition Behavior in a Dual Fuel Turbocharged Direct Injection Engine Using Propane and Methane as Primary Fuels
,”
ASME J. Energy Res. Tech.
,
135
(3), p.
032202
.10.1115/1.4023482
12.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Bell
,
S. R.
,
Midkiff
,
K. C.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2004
, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(3), pp.
665
671
.10.1115/1.1760530
13.
Goldsworthy
,
L.
,
2012
, “
Combustion Behaviour of a Heavy Duty Common Rail Marine Diesel Engine Fumigated With Propane
,”
Exp. Thermal Fluid Sci.
,
42
, pp.
93
106
.10.1016/j.expthermflusci.2012.04.016
14.
Kamimoto
,
T.
, and
Bae
,
M.
,
1988
, “
High Combustion Temperature for the Reduction of Particulate in Diesel Engines
,”
SAE
Technical Paper No. 880423. 10.4271/880423
15.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
, and
Sasaki
,
S.
,
2001
, “
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
,”
SAE
Technical Paper No. 2001-01-0655. 10.4271/2001-01-0655
16.
Kook
,
S.
,
Bae
,
C.
,
Miles
,
P.
, and
Choi
,
D.
,
2005
, “
The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions
,”
SAE
Technical Paper No. 2005-01-3837. 10.4271/2005-01-3837
17.
Dec
,
J. E.
,
2009
, “
Advanced Compression-Ignition Engines—Understanding The In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(2), pp.
2727
2742
.10.1016/j.proci.2008.08.008
18.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2006
, “
The Advanced Injection Low Pilot Ignited Natural Gas Engine: A Combustion Analysis
.”
ASME J. Eng. Gas Turbines Power
,
128
(1), pp.
213
218
.10.1115/1.1915428
19.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Qi
,
Y.
,
Midkiff
,
K. C.
, and
Yang
,
H.
,
2007
, “
Analysis of Diesel Pilot-Ignited Natural Gas Low-Temperature Combustion With Hot Exhaust Gas Recirculation
,”
Combust. Sci. Technol.
,
179
(9), pp.
1737
1776
.10.1080/00102200701259882
20.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
,
Midkiff
,
K. C.
, and
Bell
,
S. R.
,
2003
, “
The Advanced Low Pilot Ignited Natural Gas Engine: A Low NOx Alternative to the Diesel Engine
,”
ASME
Paper No. IJPGC2003-40098. 10.1115/IJPGC2003-40098
21.
Polk
,
A. C.
,
2013
, “
Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines
,” Ph.D. thesis, Mississippi State University, Mississippi State, MS.
22.
Hohenberg
,
G.
,
1979
, “
Advanced Approaches for Heat Transfer Correlations
,”
SAE
Technical Paper No. 790825. 10.4271/790825
You do not currently have access to this content.