In the current study, the influence of pressure and steam on the emission formation in a premixed natural gas flame is investigated at pressures between 1.5 bar and 9 bar. A premixed, swirl-stabilized combustor is developed that provides a stable flame up to very high steam contents. Combustion tests are conducted at different pressure levels for equivalence ratios from lean blowout to near-stoichiometric conditions and steam-to-air mass ratios from 0% to 25%. A reactor network is developed to model the combustion process. The simulation results match the measured NOx and CO concentrations very well for all operating conditions. The reactor network is used for a detailed investigation of the influence of steam and pressure on the NOx formation pathways. In the experiments, adding 20% steam reduces NOx and CO emissions to below 10 ppm at all tested pressures up to near-stoichiometric conditions. Pressure scaling laws are derived: CO changes with a pressure exponent of approximately −0.5 that is not noticeably affected by the steam. For the NOx emissions, the exponent increases with equivalence ratio from 0.1 to 0.65 at dry conditions. At a steam-to-air mass ratio of 20%, the NOx pressure exponent is reduced to −0.1 to +0.25. The numerical analysis reveals that steam has a strong effect on the combustion chemistry. The reduction in NOx emissions is mainly caused by lower concentrations of atomic oxygen at steam-diluted conditions, constraining the thermal pathway.

References

1.
Pratt & Whitney
,
2002
, “
Humid Air Turbine Cycle Technology Development Program—Final Report
,” National Energy Technology Center, U.S. Department of Energy, Technical Progress Report.
2.
Araki
,
H.
,
Koganezawa
,
T.
,
Myouren
,
C.
,
Higuchi
,
S.
,
Takahashi
,
T.
, and
Eta
,
T.
,
2012
, “
Experimental and Analytical Study on the Operation Characteristics of the AHAT System
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
051701
.10.1115/1.4004732
3.
Bartlett
,
M.
,
2002
, “
Developing Humidified Gas Turbine Cycles
,” Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden.
4.
Göke
,
S.
,
Füri
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process. Technol.
,
107
, pp. 14–22.10.1016/j.fuproc.2012.06.019
5.
Dryer
,
F.
,
1977
, “
Water Addition to Practical Combustion Systems—Concepts and Applications
,”
Symp. (Int.) Combust.
,
16
(1), pp.
279
295
.10.1016/S0082-0784(77)80332-9
6.
Mazas
,
A.
,
Lacoste
,
D.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.10.1115/GT2010-22512
7.
Zhao
,
D.
,
Yamashita
,
H.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Furuhata
,
T.
,
2002
, “
Behavior and Effect on NOx Formation of OH Radical in Methane-Air Diffusion Flame With Steam Addition
,”
Combust. Flame
,
130
(4), pp.
352
360
.10.1016/S0010-2180(02)00385-1
8.
Göke
,
S.
, and
Paschereit
,
C.
,
2013
, “
Influence of Steam Dilution on Nitrogen Oxide Formation in Premixed Methane/Hydrogen Flames
,”
J. Propul. Power
,
29
(1), pp. 249–260.10.2514/1.B34577
9.
Bhargava
,
A.
,
Colket
,
M.
,
Sowa
,
W.
,
Casleton
,
K.
, and
Maloney
,
D.
,
2000
, “
An Experimental and Modeling Study of Humid Air Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
122
(3), pp.
405
411
.10.1115/1.1286921
10.
Kobayashi
,
H.
,
Yata
,
S.
,
Ichikawa
,
Y.
, and
Ogami
,
Y.
,
2009
, “
Dilution Effects of Superheated Water Vapor on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combustion Inst.
,
32
(2), pp.
2607
2614
.10.1016/j.proci.2008.05.078
11.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R.
,
2006
,
Combustion—Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
, 4th ed.,
Springer
,
New York
.
12.
Göke
,
S.
,
Terhaar
,
S.
,
Göckeler
,
K.
, and
Paschereit
,
C.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
ASME
Paper No. GT2011-45696.10.1115/GT2011-45696
13.
Park
,
J.
,
Keel
,
S. I.
, and
Yun
,
J. H.
,
2007
, “
Addition Effects of H2 and H2O Flame Structure and Pollutant Emissions in Methane-Air Diffusion Flame
,”
Energy Fuels
,
21
(6), pp.
3216
3224
.10.1021/ef700211m
14.
Beér
,
J.
, and
Chigier
,
N.
,
1972
,
Combustion Aerodynamics
,
Applied Science Publishers Ltd.
, New York.
15.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
,
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,
ASME
,
New York
.
16.
Goodwin
,
D.
,
2003
, “
An Open Source, Extensible Software Suite for CVD Process Simulation
,” California Institute of Technology, Division of Engineering and Applied Science, Pasadena, CA.
17.
Healy
,
D.
,
Kalitan
,
D.
,
Aul
,
C.
,
Petersen
,
E.
,
Bourque
,
G.
, and
Curran
,
H.
,
2010
, “
Oxidation of C1–C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.10.1021/ef9011005
18.
Sivaramakrishnan
,
R.
,
Brezinsky
,
K.
,
Dayma
,
G.
, and
Dagaut
,
P.
,
2007
, “
High Pressure Effects on the Mutual Sensitization of the Oxidation of NO and CH4–C2H6 Blends
,”
Phys. Chem. Chem. Phys.
,
9
(
31
), pp.
4230
4244
.10.1039/b703379f
19.
Beér
,
J.
,
1965
, “
The Effect of the Residence Time Distribution on the Performance and Efficiency of Combustors
,”
Symp. (Int.) Combust.
,
10
(1), pp.
1187
1202
.10.1016/S0082-0784(65)80255-7
20.
Michaud
,
M.
,
Westmoreland
,
P.
, and
Feitelberg
,
A.
,
1992
, “
Chemical Mechanisms of NOx Formation for Gas Turbine Conditions
,”
Symp. (Int.) Combust.
,
24
(1), pp.
879
887
.10.1016/S0082-0784(06)80105-0
21.
Leckner
,
B.
,
1972
, “
Spectral and Total Emissivity of Water Vapor and Carbon Dioxide
,”
Combust. Flame
,
19
(1), pp.
33
48
.10.1016/S0010-2180(72)80084-1
22.
Correa
,
S.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
23.
Bhargava
,
A.
,
Kendrick
,
D. W.
,
Colket
,
M. B.
,
Sowa
,
W. A.
,
Casleton
,
K. H.
, and
Maloney
,
D. J.
,
2000
, “
Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines
,”
ASME
Paper No. 2000-GT-97.
24.
Lefebvre
,
H.
,
1983
,
Gas Turbine Combustion
,
Hemisphere Publishing Corporation
,
New York
.
25.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel-Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(1-2), pp.
247
288
.10.1016/j.combustflame.2007.04.007
26.
Santner
,
J.
,
Dryer
,
F.
, and
Ju
,
Y.
,
2012
, “
Effect of Water Content on Syngas Combustion at Elevated Pressure
,”
50th AIAA Aerospace Science Meeting
, Nashville, TN, January 9–12,
AIAA
Paper No. 2012-0163.10.2514/6.2012-163
You do not currently have access to this content.