In this first paper, the authors undertake a review of the literature in the field of ozone-assisted combustion in order to summarize literature findings. The use of a detailed n-heptane combustion model including ozone kinetics helps analyze these earlier results and leads into experimentation within the authors' laboratory using a single-cylinder, direct-injection compression ignition engine, briefly discussed here and in more depth in a following paper. The literature and kinetic modeling outcomes indicate that the addition of ozone leads to a decrease in ignition delay, both in comparison to no added ozone and with a decreasing equivalence ratio. This ignition delay decrease as the mixture leans is counter to the traditional increase in ignition delay with decreasing equivalence ratio. Moreover, the inclusion of ozone results in slightly higher temperatures in the cylinder due to ozone decomposition, augmented production of nitrogen oxides, and reduction in particulate matter through radial atomic oxygen chemistry. Of additional importance, acetylene levels decrease but carbon monoxide emissions are found to both increase and decrease as a function of equivalence ratio. This work illustrates that, beyond a certain level of assistance (approximately 20 ppm for the compression ratio of the authors' engine), adding more ozone has a negligible influence on combustion and emissions. This occurs because the introduction of O3 into the intake causes a temperature-limited equilibrium set of reactions via the atomic oxygen radical produced.

References

1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
2.
Kawano
,
D.
,
Ishii
,
H.
,
Goto
,
Y.
,
Noda
,
A.
, and
Aoyagi
,
Y.
,
2007
, “
Effect of Exhaust Gas Recirculation on Exhaust Emissions From Diesel Engines Fuelled With Biodiesel
,”
SAE
Technical Paper No. 2007-24-0128.10.4271/2007-24-0128
3.
Ragone
,
C.
,
2012
, “
Emission Reduction and Assisted Combustion Strategies for Compression Ignition Engines With Subsequent Testing on a Single-Cylinder Engine
,” Master's thesis, University of Kansas, Lawrence, KS.
4.
Cecrle
,
E.
,
Depcik
,
C.
,
Duncan
,
A.
,
Guo
,
J.
,
Mangus
,
M.
,
Peltier
,
E.
,
Stagg-Williams
,
S.
, and
Zhong
,
Y.
,
2012
, “
Investigation of the Effects of Biodiesel Feedstock on the Performance and Emissions of a Single-Cylinder Diesel Engine
,”
Energy Fuels
,
26
(
4
), pp.
2331
2341
.10.1021/ef2017557
5.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
,
2000
, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
,
59
(
3–4
), pp.
335
345
.10.1016/S0920-5861(00)00299-6
6.
Yanying
,
W.
,
Raman
,
S.
, and
Grizzle
,
J. W.
,
1999
, “Dynamic Modeling of a Lean NOx Trap for Lean Burn Engine Control,”
American Control Conference
, San Diego, CA, June 2–4, pp.
1208
1212
.10.1109/ACC.1999.783232
7.
Nakada
,
K.
,
Kitano
,
T.
,
Fuse
,
S.
,
Shoyama
,
T.
, and
Yoshioka
,
Y.
,
2007
, “
Automatic Control of NO Removal by Ozone Injection Method
,”
Int. J. Plasma Environ. Sci. Tech.
,
1
(
1
), pp. 34–38.
8.
Depcik
,
C.
,
Assanis
,
D.
, and
Bevan
,
K.
,
2008
, “
A One-Dimensional Lean NOx Trap Model With a Global Kinetic Mechanism That Includes NH3 and N2O
,”
Int. J. Eng. Res.
,
9
(
1
), pp.
57
77
.10.1243/14680874JER01807
9.
Smith
,
M. A.
,
Depcik
,
C. D.
,
Hoard
,
J. W.
,
Bohac
,
S.
V
.
, and
Assanis
,
D. N.
,
2011
, “
Modeling of SCR NH3 Storage in the Presence of H2O
,”
ASME
Paper No. ICEF2011-60233.10.1115/ICEF2011-60233
10.
Smith
,
M. A.
,
Depcik
,
C. D.
,
Klinkert
,
S.
,
Hoard
,
J. W.
,
Bohac
,
S.
V
.
, and
Assanis
,
D. N.
,
2011
, “
NO2 Reaction Pathways With NH3 on an Fe-Zeolite SCR Catalyst
,”
ASME
Paper No. ICEF2011-60114.10.1115/ICEF2011-60114
11.
Okubo
,
M.
,
Arita
,
N.
,
Kuroki
,
T.
, and
Yamamoto
,
T.
,
2005
, “
Total Diesel Emission Control System Using Ozone Injection and Plasma Desorption
,”
IEEE Industry Applications Conference Fortieth IAS Annual Meeting
, Kowloon, Hong Kong, October 2–6, pp.
2924
2931
.10.1109/IAS.2005.1518875
12.
Fujishima
,
H.
,
Tatsumi
,
A.
,
Kuroki
,
T.
,
Tanaka
,
A.
,
Otsuka
,
K.
,
Yamamoto
,
T.
, and
Okubo
,
M.
,
2010
, “
Improvement in NOx Removal Performance of the Pilot-Scale Boiler Emission Control System Using an Indirect Plasma–Chemical Process
,”
IEEE Trans. Ind. Appl.
,
46
(
5
), pp.
1722
1729
.10.1109/TIA.2010.2058079
13.
Shoyama
,
T.
, and
Yoshioka
,
Y.
,
2007
, “
Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal From Diesel Exhaust Gases by Silent Discharge
,”
Electr. Eng. Japan
,
161
(
3
), pp.
1
9
.10.1002/eej.20556
14.
Yamamoto
,
T.
,
Kajimoto
,
A.
,
Okubo
,
M.
,
Kuroki
,
T.
, and
Yoshida
,
K.
,
2008
, “
PM and NOx Removal for Diesel Engine Emission Using Ozonizer and Chemical Hybrid Reactor
,”
IEEE Trans. Ind. Appl.
,
44
(
5
), pp.
1431
1435
.10.1109/TIA.2008.2002279
15.
Mohammadi
,
A.
,
Kaneda
,
Y.
,
Sogo
,
T.
,
Kidoguchi
,
Y.
, and
Miwa
,
K.
,
2003
, “
A Study on Diesel Emission Reduction Using a High-Frequency Dielectric Barrier Discharge Plasma
,”
SAE
Technical Paper 2003-01-1879.10.4271/2003-01-1879
16.
Levendis
,
Y. A.
, and
Larsen
,
C.
,
1999
, “
Use of Ozone-Enriched Air for Diesel Particulate Trap Regeneration
,”
SAE
Technical Paper No. 1999-01-0114.10.4271/1999-01-0114
17.
Depcik
,
C.
,
2010
, “
Simulating the Concentration Equations and the Gas-Wall Interface for One-Dimensional Based Diesel Particulate Filter Models
,”
ASME J. Gas Turbines Power
,
132
(
3
), p. 032803.10.1115/1.3155792
18.
Yamada
,
H.
,
Ohtomo
,
M.
,
Yoshii
,
M.
, and
Tezaki
,
A.
,
2005
, “
Controlling Mechanism of Ignition Enhancing and Suppressing Additives in Premixed Compression Ignition
,”
Int. J. Eng. Res.
,
6
(
4
), pp.
331
340
.10.1243/146808705X30594
19.
Mohammadi
,
A.
,
Kawanabe
,
H.
,
Ishiyama
,
T.
,
Shioji
,
M.
, and
Komada
,
A.
,
2006
, “
Study on Combustion Control in Natural-Gas PCCI Engines With Ozone Addition Into Intake Gas
,”
SAE
Technical Paper No. 2006-01-0419.10.4271/2006-01-0419
20.
Nishida
,
H.
, and
Tachibana
,
T.
,
2006
, “
Homogeneous Charge Compression Ignition of Natural Gas/Air Mixture With Ozone Addition
,”
J. Propuls. Power
,
22
(
1
), pp.
151
157
.10.2514/1.14991
21.
Foucher
,
F.
,
Higelin
,
P.
,
Mounaïm-Rousselle
,
C.
, and
Dagaut
,
P.
,
2012
, “
Influence of Ozone on the Combustion of n-Heptane in a HCCI Engine
,”
Proc. Combust. Inst.
,
34
(2), pp. 3005–3012.10.1016/j.proci.2012.05.042
22.
Tachibana
,
T.
,
Hirata
,
K.
,
Nishida
,
H.
, and
Osada
,
H.
,
1991
, “
Effect of Ozone on Combustion of Compression Ignition Engines
,”
Combust. Flame
,
85
(
3–4
), pp.
515
519
.10.1016/0010-2180(91)90154-4
23.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1984
, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
1
), pp.
1
57
.10.1016/0360-1285(84)90118-7
24.
Clothier
,
P.
,
Aguda
,
B.
,
Moise
,
A.
, and
Pritchard
,
H.
,
1993
, “
How Do Diesel-Fuel Ignition Improvers Work?
,”
Chem. Soc. Rev.
,
22
(
2
), pp.
101
108
.10.1039/cs9932200101
25.
Faison
, I
. L.
,
1997
, “
The Effect of Ozone on Diesel Soot Precursors
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
26.
Nasser
,
S. H.
,
Morris
,
S.
, and
James
,
S.
,
1998
, “
A Novel Fuel-Efficient and Emission-Abatement Technique for Internal-Combustion Engines
,”
SAE
Technical Paper 982561.10.4271/982561
27.
Golovitchev
,
V. I.
, and
Chomiak
,
J.
,
1998
, “
Evaluation of Ignition Improvers for Methane Autoignition
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
31
47
.10.1080/00102209808924148
28.
Halter
,
F.
,
Higelin
,
P.
, and
Dagaut
,
P.
,
2011
, “
Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane
,”
Energy Fuels
,
25
(
7
), pp.
2909
2916
.10.1021/ef200550m
29.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(1), pp.
193
200
.10.1016/j.proci.2010.05.027
30.
Mehl
,
M.
,
Pitz
,
W. J.
,
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2009
, “
Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine
,”
SAE
Paper No. 2009-01-1806.10.4271/2009-01-1806
31.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1–2
), pp.
149
177
.10.1016/S0010-2180(97)00282-4
32.
Center
,
R.
, and
Kung
,
R.
,
1975
, “
Shock Tube Study of the Thermal Decomposition of O3 from 1000 to 3000°K
,”
J. Chem. Phys.
,
62
(3), pp.
802
807
.10.1063/1.430530
33.
Chang
,
J. S.
,
Lawless
,
P. A.
, and
Yamamoto
,
T.
,
1991
, “
Corona Discharge Processes
,”
IEEE Trans. Plasma Sci.
,
19
(
6
), pp.
1152
1166
.10.1109/27.125038
34.
Jones
,
W. M.
, and
Davidson
,
N.
,
1962
, “
The Thermal Decomposition of Ozone in a Shock Tube
,”
J. Am. Chem. Soc.
,
84
(
15
), pp.
2868
2878
.10.1021/ja00874a005
35.
Kitayama
,
J.
, and
Kuzumoto
,
M.
,
1997
, “
Theoretical and Experimental Study on Ozone Generation Characteristics of an Oxygen-Fed Ozone Generator in Silent Discharge
,”
J. Phys. D: Appl. Phys.
,
30
(17), pp. 2453–2461.10.1088/0022-3727/30/17/011
36.
Kitayama
,
J.
, and
Kuzumoto
,
M.
,
1999
, “
Analysis of Ozone Generation From Air in Silent Discharge
,”
J. Phys. D: Appl. Phys.
,
32
(23), pp. 3032–3040.10.1088/0022-3727/32/23/309
37.
Luther
,
K.
,
Oum
,
K.
, and
Troe
,
J.
,
2005
, “
The Role of the Radical-Complex Mechanism in the Ozone Recombination/Dissociation Reaction
,”
Phys. Chem. Chem. Phys.
,
7
(
14
), pp.
2764
2770
.10.1039/b504178c
38.
Myers
,
B.
, and
Bartle
,
E.
,
1967
, “
Shock Tube Study of the Radiative Processes in Systems Containing Atomic Oxygen and Carbon Monoxide at High Temperature
,”
J. Chem. Phys.
,
47
(5), pp. 1783–1792.10.1063/1.1712166
39.
Ombrello
,
T.
,
Won
,
S. H.
,
Ju
,
Y.
, and
Williams
,
S.
,
2010
, “
Flame Propagation Enhancement by Plasma Excitation of Oxygen. Part I: Effects of O3
,”
Combust. Flame
,
157
(
10
), pp.
1906
1915
.10.1016/j.combustflame.2010.02.005
40.
McCrumb
,
J. L.,
and
Kaufman
,
F.
,
1972
, “
Kinetics of the O+O Reaction
,”
J. Chem. Phys.
,
57
(3), pp. 1270–1276.10.1063/1.1678386
41.
Westbrook
,
C. K.
,
2000
, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1563
1577
.10.1016/S0082-0784(00)80554-8
42.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Curran
,
H. C.
,
Boercker
,
J.
, and
Kunrath
,
E.
,
2001
, “
Chemical Kinetic Modeling Study of Shock Tube Ignition of Heptane Isomers
,”
Int. J. Chem. Kinet.
,
33
(
12
), pp.
868
877
.10.1002/kin.10020
43.
Viner
,
A. S.
,
Lawless
,
P. A.
,
Ensor
,
D. S.
, and
Sparks
,
L. E.
,
1992
, “
Ozone Generation in DC-Energized Electrostatic Precipitators
,”
IEEE Trans. Ind. Appl.
,
28
(
3
), pp.
504
512
.10.1109/28.137427
44.
Benson
,
S. W.
, and
Axworthy
, Jr
.
,
A. E.
,
1957
, “
Mechanism of the Gas Phase, Thermal Decomposition of Ozone
,”
J. Chem. Phys.
,
26
(6), pp. 1718–1726.10.1063/1.1743610
45.
Johnston
,
H. S.
,
1968
, “
Gas Phase Reaction Kinetics of Neutral Oxygen Species
” (National Standard Reference Data Series), United States National Bureau of Standards, Washington, DC.
46.
Benson
,
S. W.
,
1960
,
The Foundations of Chemical Kinetics
,
McGraw-Hill
,
New York
.
47.
Hampson
,
R. F.
,
Braun
,
W.
,
Brown
,
R.
,
Garvin
,
D.
,
Herron
,
J.
,
Huie
,
R.
,
Kurylo
,
M.
,
Laufer
,
A.
,
McKinley
,
J.
, and
Okabe
,
H.
,
1973
, “
Survey of Photochemical and Rate Data for Twenty-Eight Reactions of Interest in Atmospheric Chemistry
,”
J. Phys. Chem. Ref. Data
,
2
(2), pp. 267–312.10.1063/1.3253120
48.
Intezarova
,
E.
, and
Kondrat'ev
,
V.
,
1967
, “
Thermal Decomposition of Ozone
,”
Russian Chem. Bull.
,
16
(
11
), pp.
2326
2331
.10.1007/BF00911837
49.
Krezenski
,
D. C.
,
Simonaitis
,
R.
, and
Heicklen
,
J.
,
1971
, “
The Reactions of O (3p) with Ozone and Carbonyl Sulfide
,”
Int. J. Chem. Kinet.
,
3
(
5
), pp.
467
482
.10.1002/kin.550030508
50.
Schiff
,
H.
,
1969
, “
Neutral Reactions Involving Oxygen and Nitrogen
,”
Can. J. Chem.
,
47
(
10
), pp.
1903
1916
.10.1139/v69-309
51.
Yamada
,
H.
,
Yoshii
,
M.
, and
Tezaki
,
A.
,
2005
, “
Chemical Mechanistic Analysis of Additive Effects in Homogeneous Charge Compression Ignition of Dimethyl Ether
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2773
2780
.10.1016/j.proci.2004.08.253
52.
Molina
,
M. J.
, “
The Nobel Prize in Chemistry 1995
,” http://molina.hitunic.com/1.htm
53.
Goswami
,
M.
,
Volkov
,
E. N.
,
Konnov
,
A. A.
,
Bastiaans
,
R. J. M.
, and
de
Goey
,
L. P. H.
,
2008
, “
Updated Kinetic Mechanism for NOx Prediction and Hydrogen Combustion
,” Technische Universiteit Eindhoven, Eindhoven, The Netherlands, Technical Report.
54.
Konnov
,
A. A.
,
2008
, “
Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion
,”
Combust. Flame
,
152
(
4
), pp.
507
528
.10.1016/j.combustflame.2007.10.024
55.
Smith
,
G.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Song
,
S.
, and
Gardiner
,
W.
, 2008, “
Gri-Mech 3.0. Software Package
,” Gas Research Institute, Berkley, CA, http://me.berkeley.edu/gri-mech
56.
Warnatz
,
J.
,
1996
, “
Experimental and Computational Study of Ignition and Flame Propagation in Internal Combustion Engines
,”
Endeavour
,
20
(
1
), pp.
31
36
.10.1016/0160-9327(96)10004-1
57.
Ó
Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
621
.10.1002/kin.20036
58.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
,
Elsevier
,
Burlington, MA
.
You do not currently have access to this content.