One of the most effective factors influencing performance, efficiency, and pollutant emissions of internal combustion engines is the combustion phasing: in gasoline engines electronic control units (ECUs) manage the spark advance (SA) in order to set the optimal combustion phase. Combustion control is assuming a crucial role in reducing engine tailpipe emissions and maximizing performance. The number of actuations influencing the combustion is increasing, and as a consequence, the calibration of control parameters is becoming challenging. One of the most effective factors influencing performance and efficiency is the combustion phasing: for gasoline engines, control variables such as SA, air-to-fuel ratio (AFR), variable valve timing (VVT), and exhaust gas recirculation (EGR) are mostly used to set the combustion phasing. The optimal control setting can be chosen according to a target function (cost or merit function), taking into account performance indicators, such as indicated mean effective pressure (IMEP), brake-specific fuel consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature or knock intensity. Many different approaches can be used to reach the best calibration settings: design of experiment (DOE) is a common option when many parameters influence the results, but other methodologies are in use: some of them are based on the knowledge of the controlled system behavior by means of models that are identified during the calibration process. The paper proposes the use of a different concept, based on the extremum seeking approach. The main idea consists in changing the values of each control parameter at the same time, identifying its effect on the monitored target function, and allowing to shift automatically the control setting towards the optimum solution throughout the calibration procedure. An original technique for the recognition of control parameters variations effect on the target function is introduced, based on spectral analysis. The methodology has been applied to data referring to different engines and operating conditions, using IMEP, exhaust temperature, and knock intensity for the definition of the target function and using SA and AFR as control variables. The approach proved to be efficient in reaching the optimum control setting, showing that the optimal setting can be achieved rapidly and consistently.

References

1.
Robert Bosch GmbH
,
2006
,
Gasoline Engine Management
,
Wiley
,
New York.
2.
Ponti
,
F.
,
Ravaglioli
, V
.
,
Serra
,
G.
, and
Stola
,
F.
,
2010
, “
Instantaneous Engine Speed Measurement and Processing for MFB50 Evaluation
,”
SAE Int. J. Engines
,
2
(
2
), pp.
235
244
.10.4271/2009-01-2747
3.
Ponti
,
F.
,
De Cesare
,
M.
, and
Ravaglioli
,
V.
,
2011
, “
Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities
,”
SAE
Technical Paper No. 2011-24-0145. 10.4271/2011-24-0145
4.
Ravaglioli
,
V.
,
Ponti
,
F.
, and
Stola
,
F.
,
2011
, “
Torsional Analysis of Different Powertrain Configurations for Torque and Combustion Phase Evaluation
,”
SAE
Technical Paper No. 2011-01-1544. 10.4271/2011-01-1544
5.
Ravaglioli
,
V.
,
Moro
,
D.
,
Serra
,
G.
, and
Ponti
,
F.
,
2011
, “
MFB50 On-Board Evaluation Based on a Zero-Dimensional ROHR Model
,”
SAE
Technical Paper No. 2011-01-1420. 10.4271/2011-01-1420
6.
Hamedović
,
H.
,
Raichle
,
F.
,
Breuninger
,
J.
,
Fischer
,
W.
,
Dieterle
,
W.
,
Klenk
,
M.
, and
Böhme
,
J. F.
,
2005
, “
IMEP-Estimation and In-Cylinder Pressure Reconstruction for Multicylinder SI-Engine by Combined Processing of Engine Speed and One Cylinder Pressure
,”
SAE
Technical Paper No. 2005-01-0053. 10.4271/2005-01-0053
7.
Guillemin
,
F.
,
Grondin
,
O.
,
Chauvin
,
J.
, and
Nguyen
,
E.
,
2008
, “
Combustion Parameters Estimation Based on Knock Sensor for Control Purpose Using Dedicated Signal Processing Platform
,”
SAE
Technical Paper No. 2008-01-0790.10.4271/2008-01-0790
8.
Rivara
,
N.
,
Dickinson
,
P.
, and
Shenton
,
A.
,
2009
, “
Peak Pressure Position Control of Four Cylinders Through the Ion Current Method
,”
SAE
Technical Paper No. 2009-01-0235. 10.4271/2009-01-0235
9.
Cavina
,
N.
,
Moro
,
D.
,
Poggio
,
L.
,
Zecchetti
,
D.
,
Nanni
,
R.
, and
Gelmetti
,
A.
,
2007
, “
Individual Cylinder Combustion Control Based on Real-Time Processing of Ion Current Signals
,”
SAE
Technical Paper No. 2007-01-1510. 10.4271/2007-01-1510
10.
Guerrier
,
M.
, and
Cawsey
,
P.
,
2004
, “
The Development of Model Based Methodologies for Gasoline IC Engine Calibration
,”
SAE
Technical Paper No. 2004-01-1466. 10.4271/2004-01-1466
11.
Jiang
,
S.
,
Nutter
,
D.
, and
Gullitti
,
A.
,
2012
, “
Implementation of Model-Based Calibration for a Gasoline Engine
,”
SAE
Technical Paper No. 2012-01-0722.10.4271/2012-01-0722
12.
Halliday
,
T.
,
Lawrance
,
A. J.
, and
Davis
,
T. P.
,
1998
, “
Engine Mapping Experiments: A Two Stage Regression Approach
,”
Technometrics
,
40
(2), pp.
120
126
.10.1080/00401706.1998.10485194
13.
Rose
,
D. W.
,
Cary
,
M.
,
Zulczyk
,
S. B.
,
Sbaschnig
,
R.
, and
Ebrahimi
,
K. M.
,
2002
, “
An Engine Mapping Case Study—A Two Stage Regression Approach
,” IMechE Paper No. C606/025/2002.
14.
Morton
,
T. M.
, and
Knott
,
S.
,
2002
, “
Radial Basis Functions for Engine Modeling
,” IMechE Paper No. C606/022/2002.
15.
Suzuki
,
K.
,
Nemoto
,
M.
, and
Machida
,
K.
,
2007
, “
Computer-Aided Calibration for Spark Advance Control Using Engine Cycle Simulation and Polynomial Regression Interpolation
,”
SAE
Technical, Paper No. 2007-01-4023. 10.4271/2007-01-4023
16.
L.
Eriksson
,
1999
, “
Spark Advance for Optimal Efficiency
,”
SAE
Technical, Paper No. 1999-01-0548. 10.4271/1999-01-0548
17.
Haskara
,
I.
,
Zhu
,
G. G.
,
Daniel
,
C. F.
, and
Winkelman
,
J.
,
2004
, “
On Combustion Invariance for MBT Timing Estimation and Control
,”
ASME
Paper No. ICEF2004-0835. 10.1115/ICEF-2004-0835
18.
Corti
,
E.
, and
Forte
,
C.
,
2010
, “
A Statistical Approach to Spark Advance Mapping
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082803
.10.1115/1.4000294
19.
Corti
,
E.
, and
Forte
,
C.
,
2010
, “
Spark Advance Real-Time Optimization Based on Combustion Analysis
,”
ASME
Paper No. ICEF2010-35134. 10.1115/ICEF2010-35134
20.
Patterson
,
G.
,
2008
, “
A Technique for Processing Cylinder Pressure and Test Bed Data Sets for Engine Speed Sweep Tests to Allow Reduced Testing Time With Enhanced Interpretation of Results
,”
SAE
Technical Paper 2008-01-3006. 10.4271/2008-01-3006
21.
Aryur
,
K. B.
, and
Krstic
,
M.
,
2003
,
Real-Time Optimization by Extremum Seeking Control
,
Wiley Interscience
,
New York
.
22.
Schneider
,
G.
,
Ariyur
,
K. B.
, and
Krstic
,
M.
,
2000
, “
Tuning of a Combustion Controller by Extremum Seeking: A Simulation Study
,”
39th IEEE Conference on Decision and Control
, Sydney, Australia, December 12–15, pp.
5219
5223
.10.1109/CDC.2001.914786
23.
Banazsuk
,
A.
,
Zhang
,
Y.
, and
Jacobson
,
C. A.
,
2000
, “
Adaptive Control of Combustion Instability Using Extremum-Seeking
,”
American Control Conference
, Chicago IL, June 28–30, pp.
416
422
.10.1109/ACC.2000.878934
24.
Kalli
,
B.
,
Caarls
,
W.
,
Jonker
,
P.
, and
Wisse
,
M.
,
2012
, “
Comparison of Extremum Seeking Control Algorithms for Robotic Applications
,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vilamoura, Portugal, October 7–12, pp.
3195
3202
.10.1109/IROS.2012.6386180
25.
Cristofori
,
D.
,
Vacca
,
A.
, and
Ariyur
,
K.
,
2012
, “
A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines
,”
SAE Int. J. Commer. Veh.
,
5
(
2
), pp.
586
596
.10.4271/2012-01-2035
26.
Haskara
, I
.
,
Zhu
,
G. G.
, and
Winkelmann
,
J.
,
2006
, “
Multivariable EGR/Spark Timing Control for IC Engines Via Extremum Seeking
,”
American Control Conference
, Minneapolis, MN, June 14–16.10.1109/ACC.2006.1656376
27.
Killingsworth
,
N.
,
Aceves
,
S.
,
Flowers
,
D.
, and
Krstic
,
M.
,
2007
, “
Extremum Seeking Tuning of an Experimental HCCI Engine Combustion Timing Controller
,”
American Control Conference
, New York, July 9–13, pp.
3665
3670
.10.1109/ACC.2007.4282765
28.
Flowers
,
D.
,
Killingsworth
,
N.
,
Espinosa-Loza
,
F.
,
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Krstic
,
M.
, and
Dibble
,
R.
,
2009
, “
Demonstrating Optimum HCCI Combustion With Advanced Control Technology
,”
SAE
Technical Paper No. 2009-01-1885. 10.4271/2009-01-1885
29.
Hellstrom
,
E.
,
Lee
,
D.
,
Jiang
,
L.
,
Stefanopoulou
,
A. G.
, and
Yilmaz
,
H.
, “
On-Board Calibration of Spark Timing by Extremum Seeking for Flex-Fuel Engines
,”
IEEE Trans. Control Syst. Technol.
,
21
(6), pp.
2273
2279
.10.1109/TCST.2012.2236093
30.
Corti
,
E.
,
Moro
,
D.
, and
Solieri
,
L.
,
2007
, “
Real-Time Evaluation of IMEP and ROHR-Related Parameters
,”
SAE
Technical
Paper No. 2007-24-0068. 10.4271/2007-24-0068
31.
Leppard
,
W. R.
,
1982
, “
Individual-Cylinder Knock Occurrence and Intensity in Multi-Cylinder Engines
,”
SAE
Technical Paper No. 820074. 10.4271/820074
32.
Naber
,
J. D.
,
Blough
,
J. R.
,
Frankowski
,
D.
,
Goble
,
M.
,
Szpytman
,
J. E.
,
2006
, “
Analysis of Combustion Knock Metrics in Spark-Ignition Engines
,”
SAE
Technical Paper No. 2006-01-0400. 10.4271/2006-01-0400
33.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis—An Overview
,”
Appl. Energy
,
92
, pp.
628
636
.10.1016/j.apenergy.2011.11.079
34.
Corti
,
E.
,
Mancini
,
G.
,
Moro
,
D.
, and
Forte
,
C.
,
2013
, “
Transient Spark Advance Calibration Approach
,” SAE Technical Paper No. 13ICE0146.
35.
Ikeda
,
Y.
,
Nishiyama
,
A.
,
Kim
,
S.
,
Takeuchi
,
A.
,
Wilnklhofer
,
E.
, and
Baritaud
,
T.
,
2006
, “
Cyclic Variation of Local A/F (lambda) and Mixture Quality in SI Engine Using Local Chemiluminescence
,”
7th International Symposium on internal Combustion Diagnostics
, Kurhaus Baden-Baden, Germany, May 18–19, pp.
262
275
.
36.
Aleiferis
,
P. G.
,
Hardalupas
,
Y.
,
Taylor
,
A. M. K. P.
,
Ishii
,
K.
, and
Urata
,
Y.
,
2004
, “
Flame Chemiluminescence Studies of Cyclic Combustion Variations and Air-to-Fuel Ratio of the Reacting Mixture in a Lean Burn Stratified-Charge Spark Ignition Engine
,”
Combust. Flame
,
136
(1–2), pp.
72
90
.10.1016/j.combustflame.2003.09.004
37.
Forte
,
C.
,
Bianchi
,
G. M.
,
Corti
,
E.
, and
Fantoni
,
S.
,
2008
, “
Combined Numerical and Experimental Analysis of the Influence of Air-to-Fuel Ratio on Cyclic Variation of High Performance Engines
,”
ASME
Paper No. ICES2008-1668. 10.1115/ICES2008-1668
38.
Cavina
,
N.
,
Corti
,
E.
, and
Moro
,
D.
,
2010
, “
Closed-Loop Individual Cylinder Air-Fuel Ratio Control Via UEGO Signal Spectral Analysis
,”
Control Eng. Pract.
,
18
(
11
), pp.
1295
1306
.10.1016/j.conengprac.2009.12.002
You do not currently have access to this content.