The bypass dual throat nozzle (BDTN) is a new kind of fluidic vectoring nozzle. A bypass is set between the upstream convergent section and upstream minimum area based on the conventional dual throat nozzle (DTN). The BDTN shows a minimum or even no penalty on the nozzle's thrust performance, while it would be able to produce steady and efficient vectoring deflection similar to the conventional DTN. A BDTN model has been designed and subjected to experimental and computational study. The main results show that: (1) BDTN does not consume any secondary injection from the other part of the engine, while it can produce steady and efficient vectoring deflection. (2) Under the same condition, it can provide the maximum thrust vectoring efficiency of all the known fluidic thrust vectoring concepts reported in the literature. (3) The thrust vector angle is also greater than that of the conventional DTN that has been reported up to now. Especially, under NPR = 10, the thrust vector angle of BDTN can reach 21.3 deg. (4) For a wide NPR range from 2 to 10, the BDTN generates the best thrust vectoring performance under NPR = 4. Above all, the BDTN is well suited to produce vectored thrust for nozzles.

References

1.
Gal-Or
,
B.
,
1990
,
Vectored Propulsion Supermaneuverability and Robot Aircraft
,
Springer-Verlag
,
New York
.
2.
Deere
,
K. A.
,
2003
, “
Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center
,”
AIAA
Paper No. 2003-3800. 10.2514/6.2003-3800
3.
Walker
,
S. H.
,
1997
, “
Lessons Learned in the Development of a National Cooperative Program
,”
AIAA
Paper No. 97-3348. 10.2514/6.1997-3348
4.
Deere
,
K. A.
,
2000
, “
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
,”
AIAA
Paper No. 2000-3598. 10.2514/6.2000-3598
5.
Heo
,
J.-Y.
, and
Sung
,
H.-G.
,
2012
, “
Fluid Thrust-Vector Control of Supersonic Jet Using Coflow Injection
,”
J. Propul. Power
,
28
(
4
), pp.
858
861
.10.2514/1.B34266
6.
Miller
,
D. N.
,
Yagle
,
P. J.
, and
Hamstra
,
J. W.
,
1999
, “
Fluidic Throat Skewing for Thrust Vectoring in Fixed-Geometry Nozzles
,”
AIAA
Paper No. 99-0365. 10.2514/6.1999-0365
7.
Williams
,
R. G.
, and
Vittal
,
B. R.
,
2002
, “
Fluidic Thrust Vectoring and Throat Control Exhaust Nozzle
,”
AIAA
Paper No. 2002-4060. 10.2514/6.2002-4060
8.
Shin
,
C.-S.
, and
Kim
,
H.-D.
,
2010
, “
A Computational Study of Thrust Vectoring Control Using Dual Throat Nozzle
,”
J. Therm. Sci.
,
19
(
6
), pp.
486
490
.10.1007/s11630-010-0413-x
9.
Abeyounis
,
W. K.
, and
Bennett
,
B. D.
, Jr.
,
1997
, “
Static Internal Performance of an Overexpanded Fixed-Geometry, Nonaxisymmetric Nozzle With Fluidic Pitch-Thrust-Vectoring Capability
,”
NASA
Paper No. TP-3645.
10.
Strykowski
,
P. J.
, and
Krothapalli
,
A.
,
1993
, “
The Countercurrent Mixing Layer: Strategies for Shear-Layer Control
,”
AIAA
Paper No. 93-3260. 10.2514/6.1993-3260
11.
Flamm
,
J. D.
,
1998
, “
Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
,”
AIAA
Paper No. 98-3255. 10.2514/6.1998-3255
12.
Deere
,
K. A.
,
1998
, “
PAB3D Simulation of a Nozzle With Fluidic Injection for Yaw Thrust-Vector Control
,”
AIAA
Paper No. 98-3254. 10.2514/6.1998-3254
13.
Deere
,
K. A.
,
Berrier
,
B. L.
,
Flamm
,
J. D.
, and
Johnson
,
S. K.
,
2005
, “
A Computational Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3502. 10.2514/6.2005-3502
14.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2005
, “
An Experimental Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3503. 10.2514/6.2005-3503
15.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5085. 10.2514/6.2007-5085
16.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle Concept for Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5084. 10.2514/6.2007-5084
17.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Mason
,
M. L.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2006
, “
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2006-3701. 10.2514/6.2006-3701
18.
Arne
,
V. L.
, and
Nachtigall
,
A. J.
,
1993
, “
Calculated Effects of Turbine Rotor-Blade Cooling-Air Flow, Altitude, and Compressor Bleed Point on Performance of a Turbojet Engine
,” Paper No. NACA-RM-E51E24.
19.
Gu
,
R.
, and
Xu
,
J.
,
2014
, “
Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process
,”
ASME J. Eng. Gas Turbines Power
,
136
(1), p.
014502
.10.1115/1.4025243
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, pp.
89
109
.
You do not currently have access to this content.