A hydrodynamic rolling hybrid bearing (HRHB) assembled coaxially by a rolling bearing and hydrodynamic bearing is developed to achieve two functions at low and high speeds. At low speeds, the rolling bearing of the HRHB can be utilized to avoid wear in the hydrodynamic bearing. While at high speeds, the rotor is entirely supported by the hydrodynamic bearing, keeping away the interference of the rolling bearing. However, because the HRHB is mounted coaxially by two bearings, a misalignment cannot be avoided. This can lead two unexpected consequences: either the malfunction of the rolling bearing at low speeds or the interference of rolling bearing applied on the rotor. In this paper, a computational method to calculate the maximum allowable misalignment based on the noninterference conditions of the locus of the shaft center and rolling bearing at high speeds is proposed, and the influence of the rotating speed, the spindle, and bearing structural parameters on the maximum allowable misalignment is also analyzed. The results show that the locus of the maximum allowable misalignment forms a circle along the circumferential direction. The noninterference conditions are satisfied when the maximum allowable misalignment is inside the circle.

References

References
1.
Laurant
,
F.
, and
Childs
,
D. W.
,
2002
, “
Measurements of Rotordynamic Coefficients of Hybrid Bearings With (a) a Plugged Orifice, and (b) a Worn Land Surface
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
363
368
.10.1115/1.1403461
2.
Hashimoto
,
H.
,
Wada
,
S.
, and
Nojima
,
K.
,
1986
, “
Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes. Part I: Steady-State Characteristics
,”
Tribol. Trans.
,
29
(
4
), pp.
565
571
.10.1080/05698198608981721
3.
Hashimoto
,
H.
,
Wada
,
S.
, and
Nojima
,
K.
,
1986
, “
Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes. Part II: Dynamic Characteristics
,”
Tribol. Trans.
,
29
(
4
), pp.
572
577
.10.1080/05698198608981722
4.
Kumar
,
A.
, and
Mishra
,
S. S.
,
1996
, “
Stability of a Rigid Rotor in Turbulent Hydrodynamic Worn Journal Bearings
,”
Wear
,
193
(
1
), pp.
25
30
.10.1016/0043-1648(95)06654-3
5.
Fillon
,
M.
, and
Bouyer
,
J.
,
2004
, “
Thermohydrodynamic Analysis of a Worn Plain Journal Bearing
,”
Tribol. Int.
,
37
(
2
), pp.
129
136
.10.1016/S0301-679X(03)00051-3
6.
Dobrica
,
M. B.
, and
Fillon
,
M.
,
2009
, “
Influence of Scratches on the Performance of a Partial Journal Bearing
,”
ASME
Paper No. IJTC2008-71170.10.1115/IJTC2008-71170
7.
Vaindyanathan
,
K.
, and
Keith
,
T. G.
,
1989
, “
Numerical Prediction of Cavitation in Noncircular Journal Bearings
,”
Tribol. Trans.
,
32
(
2
), pp.
215
224
.10.1080/10402008908981881
8.
Heshmat
,
H.
,
Chen
,
H. M.
, and
Walton
,
J. F.
,
2000
, “
On the Performance of Hybrid Foil-Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
73
81
.10.1115/1.483178
9.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Walton
,
J.
,
2002
, “
Performance of a Foil-Magnetic Hybrid Bearing
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
375
382
.10.1115/1.1417485
10.
Tan
,
Q. C.
,
Li
,
W.
, and
Liu
,
B.
,
2002
, “
Investigations on a Permanent Magnetic-Hydrodynamic Hybrid Journal Bearing
,”
Tribol. Int.
,
35
, pp.
443
448
.10.1016/S0301-679X(02)00026-9
11.
Tan
,
Q. C.
,
Li
,
W.
, and
Xia
,
X. J.
,
2002
, “
Investigations on a Magnetic-Hydrodynamic Hybrid Thrust Bearing
,”
Tribol. Lett.
,
12
(
1
), pp.
61
66
.10.1023/A:1013927606459
12.
Hirani
,
H.
, and
Samanta
,
P.
,
2007
, “
Hybrid (Hydrodynamic + Permanent Magnetic) Journal Bearings
,”
Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
,
221
(
8
), pp.
881
891
.10.1243/13506501JET282
13.
Samanta
,
P.
, and
Hirani
,
H.
,
2008
, “
Magnetic Bearing Configurations: Theoretical and Experimental Studies
,”
IEEE Trans. Magn.
,
44
(
2
), pp.
292
300
.10.1109/TMAG.2007.912854
14.
Jang
,
G. H.
, and
Park
,
J. S.
,
2005
, “
Development of a Highly Efficient Hard Disk Drive Spindle Motor With a Passive Magnetic Thrust Bearing and a Hydrodynamic Journal Bearing
,”
J. Appl. Phys.
,
97
(
10
), p.
10Q507
.10.1063/1.1853332
15.
Kataoka
,
H.
,
Kimura
,
Y.
,
Fujita
,
H.
, and
Takatani
,
S.
,
2005
, “
Measurement of the Rotor Motion and Corresponding Hemolysis of a Centrifugal Blood Pump With a Magnetic and Hydrodynamic Hybrid Bearing
,”
Artificial Organs
,
29
(
7
), pp.
547
556
.10.1111/j.1525-1594.2005.29091.x
16.
Wampler
,
R.
,
Lancisi
,
D.
, and
Indravudh
, V
.
,
1999
, “
A Seal-Less Centrifugal Blood Pump With Passive Magnetic and Hydrodynamic Bearings
,”
Artificial Organs
,
23
(
8
), pp.
780
784
.10.1046/j.1525-1594.1999.06422.x
17.
Harnoy
,
A.
,
2002
, “Composite Bearing–Rolling Element and Fluid Film in Series,”
Bearing Design in Machinery: Engineering Tribology and Lubrication
,
Marcel Dekker
,
New York
, Chap. 18.
18.
Harnoy
,
A.
, and
Khonsari
,
M. M.
,
1996
, “
Hydro-Roll: A Novel Bearing Design With Superior Thermal Characteristics
,”
Tribol. Trans.
,
39
(
2
), pp.
455
461
.10.1080/10402009608983552
19.
Peterson
,
R. A.
,
1967
, “
Combination Bearing
,” U.S. Patent No. 3305280.
20.
Wilcock
,
D. F.
, and
Winn
,
L. W.
,
1970
, “
The Hybrid Boost Bearing—A Method of Obtaining Long Life in Rolling Contact Bearing Applications
,”
ASME J. of Lubrication Tech.
,
92
(3), pp. 406–412.10.1115/1.3451425
21.
Wilcock
,
D. F.
, and
Winn
,
L. W.
,
1973
, “
Hybrid Boost Bearing Assembly
”, U.S. Patent No. 3708215.
22.
Klomp
,
E. D.
,
1983
, “
Air Bearing and Antifriction Bearing Assembly
,” U.S. Patent No. 394091.
23.
Lu
,
D.
,
Zhao
,
W. H.
,
Lu
,
B. H.
, and
Zhang
,
J.
,
2011
, “
A Zero Wear Assembly of a Hydrodynamic Bearing and a Rolling Bearing
,” 2011 IEEE International Symposium on Assembly and Manufacturing (
ISAM 2011
), Tampere, Finland, May 25–27.10.1109/ISAM.2011.5942312
24.
Lu
,
D.
,
Zhao
,
W. H.
,
Lu
,
B. H.
, and
Zhang
,
J.
,
2012
, “
Static Characteristics of a New Hydrodynamic Rolling Hybrid Bearing
,”
Tribol. Int.
,
48
(
4
), pp.
87
92
.10.1016/j.triboint.2011.11.010
25.
Lu
,
D.
,
Lu
,
B. H.
, and
Zhang
,
J.
,
2012
, “
Effects of Parallel Misalignment on Performance of Hydrodynamic Rolling Hybrid Bearing
,”
ASME 2012 International Mechanical Engineering Congress and Exposition
(
IMECE2012
), Houston, TX, November 9–15, ASME Paper No. IMECE2012-86262.10.1115/IMECE2012-86262
26.
Lu
,
D.
,
Zhao
,
W. H.
, and
Lu
,
B. H.
,
2013
, “
Cage Speed of Hydrodynamic Rolling Hybrid Bearings
,”
Tribol. Lett.
,
51
(
3
), pp.
303
309
.10.1007/s11249-013-0154-6
You do not currently have access to this content.