The current work involves the validation of presumed shape multi-environment Eulerian probability density function (PDF) transport method (MEPDF) using direct quadrature method of moments (DQMOM)-interaction by exchange with mean (IEM) approach for modeling turbulence chemistry interactions in nonpremixed combustion problems. The joint composition PDF is represented as a collection of finite number of Delta functions. The PDF shape is resolved by solving the governing transport equations for probability of occurrence of each environment and probability-weighted mass fraction of species and enthalpy in Eulerian frame for each environment. A generic implementation of the MEPDF approach is carried out for an arbitrary number of environments. In the current work, the MEPDF approach is used for a series of problems to validate each component of MEPDF approach in an isolated manner as well as their combined effect. First of all, a nonreactive turbulent mixing problem with two different Reynolds numbers (Re = 7000 and 11,900) is used for validation of the mixing and correction terms appear in the MEPDF approach. The second problem studied is a diffusion flame with infinitely fast chemistry having an analytical solution. The reaction component is validated by considering a 1D premixed laminar flame. In order to validate the combined effect of mixing and turbulence chemistry interactions, two different turbulent nonpremixed problems using global one-step chemistry are used. The first reactive problem used is H2 combustion (DLR Flame H3), while the second reactive validation case is a pilot-stabilized CH4 flame. The current predictions for all validation problems are compared with experimental data or published results. The study is further extended by modeling a turbulent nonpremixed H2 combustion using finite-rate chemistry effects and radiative heat transfer. The current model predictions for different flame lengths as well as minor species are compared with experimental data. The current model gave excellent predictions of minor species like OH. The differences in the current predictions with experimental data are discussed.

References

References
1.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1976
, “
On the Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
719
729
.10.1016/S0082-0784(77)80366-4
2.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
3.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University
,
Cambridge, UK
.
4.
Xu
,
J.
, and
Pope
,
S. B.
,
2000
, “
PDF Calculations of Turbulent Non-Premixed Flames With Local Extinction
,”
Combust. Flame
,
123
(
3
), pp.
281
307
.10.1016/S0010-2180(00)00155-3
5.
Liu
,
K.
,
Pope
,
S. B.
, and
Caughey
,
D. A.
,
2005
, “
Calculation of Bluff Body Stabilized Flames Using a Joint Probability Density Function Model With Detailed Chemistry
,”
Combust. Flame
,
141
(
1–2
), pp.
89
117
.10.1016/j.combustflame.2004.12.018
6.
Merci
,
B.
,
Naud
,
B.
, and
Roekaerts
,
D.
,
2005
, “
Flow and Mixing Fields for Transported Scalar PDF Simulations of a Piloted Jet Diffusion Flame (‘Delft Flame III’)
,”
Flow Turb. Combust.
,
74
(
3
), pp.
239
272
.10.1007/s10494-005-4872-1
7.
Pope
,
S. B.
,
1997
, “
Computationally Efficient Implementation of Combustion Chemistry Using In Situ Adaptive Tabulation
,”
Combust. Theory Modeling
,
1
(
1
), pp.
41
63
.10.1080/713665229
8.
Fox
,
R. O.
,
2003
,
Computational Models for Turbulent Reacting Flows
,
Cambridge University
,
Cambridge, UK
.
9.
McGraw
,
R.
,
1997
, “
Description of Aerosol Dynamics by the Quadrature Method of Moments
,”
Aerosol Sci. Technol.
,
27
(
2
), pp.
255
265
.10.1080/02786829708965471
10.
Marchisio
,
D. L.
,
Pikturna
,
J. T.
,
Fox
,
R. O.
,
Vigil
,
R. D.
, and
Barresi
,
A. A.
,
2003
, “
Quadrature Method of Moments for Population-Balance Equations
,”
AIChE J.
,
49
(
5
), pp.
1266
1276
.10.1002/aic.690490517
11.
Tang
,
Q.
,
Zhou
,
W.
,
Bockelie
,
M.
, and
Fox
,
R. O.
,
2007
, “
Multi-Environment Probability Density Function Method for Modeling Turbulent Combustion Using Realistic Chemical Kinetics
,”
Combust. Theory Modeling
,
11
(
6
), pp.
889
907
.10.1080/13647830701268890
12.
Jaishree
,
J.
, and
Haworth
,
D. C.
,
2009
, “
Comparison of Lagrangian and Eulerian PDF Methods in Simulations of Non-Premixed Turbulent Jet Flames With Strong Turbulence Chemistry Interactions
,”
6th U.S National Combustion Meeting
, Ann Arbor, MI, May 17–20, pp. 2517–2525.
13.
Akroyd
,
J.
,
Smith
,
A. J.
,
McGlashan
,
L. R.
, and
Kraft
,
M.
,
2010
, “
Numerical Investigation of DQMoM-IEM as a Turbulent Reaction Closure
,”
Chem. Eng. Sci.
,
65
(
6
), pp.
1915
1924
.10.1016/j.ces.2009.11.010
14.
Akroyd
,
J.
,
Smith
,
A. J.
McGlashan
,
L. R.
, and
Kraft
,
M.
,
2010
,
Comparison of the Stochastic Fields Method and DQMoM-IEM as Turbulent Reaction Closures
,”
Chem. Eng. Sci.
,
65
(
20
), pp.
5429
5441
.10.1016/j.ces.2010.06.039
15.
ANSYS Fluent R14 User Guide,
2011
, Ansys, Inc., Canonsburg, PA, www.ansys.com
16.
Clean Combustion Research Group, 2011, “Aerospace, Mechanical and Mechatronic Engineering,” The University of Sydney, Sydney, Australia, http://www.aeromech.usyd.edu.au/thermofluids/main_frame.htm
17.
Kuo
,
K. K.
,
1986
,
Principles of Combustion
,
Wiley-Interscience
,
New York
.
18.
Kee
,
R. J.
,
Grcar
,
J.
,
Smooke
,
M.
, and
Miller
,
J.
,
1985
, “
Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Livermore, CA, Technical Report No. SAND85.
19.
“DLR Portal,” 2014, German Aerospace Center (DLR), Cologne, Germany, http://www.dlr.de
20.
Li
,
G.
, and
Modest
,
M. F.
,
2003
, “
Importance of Turbulence Radiation Interactions in Turbulent Diffusion Jet Flames
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
831
838
.10.1115/1.1597621
21.
Barlow
,
R. S.
, and
Frank
,
J. H.
,
1998
, “Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1087
1095
.10.1016/S0082-0784(98)80510-9
22.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.10.1080/00102208108946970
23.
Yadav
,
R.
,
Verma
,
A. K.
, and
Bessette
,
D.
,
2009
, “A Hybrid Solution Methodology for Efficient Solving of Radiative Heat Transfer in Non Gray Medium Using WSSG Model,” ASME
Heat Transfer Summer Conference Collocated With the InterPACK09 and 3rd Energy Sustainability Conferences (HT2009)
, San Francisco, CA, July 19–23,
ASME
Paper No. HT2009-88482, pp.
903
910
.10.1115/HT2009-88482
24.
Schlatter
,
M.
,
Ferreira
,
J. C.
,
Flury
,
M.
, and Gass, J.,
1996
, “
Analysis of Turbulence-Chemistry Interaction With Respect to NO Formation in Turbulent Nonpremixed Hydrogen-Air Flames
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2215
2222
.10.1016/S0082-0784(96)80048-8
25.
Barlow
,
R. S.
,
2003
, “
Sandia H2/He Flame: Scalar Data
,” Sandia National Laboratories, Livermore, CA, http://www.sandia.gov/TNF/DataArch/Sandia/SandH2He.pdf
26.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2003
, “An Updated Comprehensive Kinetics Model of Hydrogen Combustion,”
Fall Technical Meeting of the Eastern States Section of the Combustion Institute
, Penn State University, University Park, PA, October 26–29, pp. 169–171.
You do not currently have access to this content.