The laminar flamelet model (LFM) (Peters, 1986, “Laminar Diffusion Flamelet Models in Non-Premixed Combustion,” Prog. Energy Combust. Sci., 10, pp. 319–339; Peters, “Laminar Flamelet Concepts in Turbulent Combustion,” Proc. Combust. Inst., 21, pp. 1231–1250) represents the turbulent flame brush using statistical averaging of laminar flamelets whose structure is not affected by turbulence. The chemical nonequilibrium effects considered in this model are due to local turbulent straining only. In contrast, the flamelet-generated manifold (FGM) (van Oijen and de Goey, 2000, “Modeling of Premixed Laminar Flames Using Flamelet-Generated Manifolds,” Combust. Sci. Technol., 161, pp. 113–137) model considers that the scalar evolution; the realized trajectories on the thermochemical manifold in a turbulent flame are approximated by the scalar evolution similar to that in a laminar flame. This model does not involve any assumption on flame structure. Therefore, it can be successfully used to model ignition, slow chemistry, and quenching effects far away from the equilibrium. In FGM, 1D premixed flamelets are solved in reaction-progress space rather than physical space. This helps better solution convergence for the flamelets over the entire mixture fraction range, especially with large kinetic mechanisms at the flammability limits (ANSYS FLUENT 14.5 Theory Guide Help Document, http://www.ansys.com). In the present work, a systematic comparative study of the FGM model with the LFM for four different turbulent diffusion/premixed flames is presented. The first flame considered in this work is methane-air flame with dilution air at the downstream. The second and third flames considered are jet flames in a coaxial flow of hot combustion products from a lean premixed flame called Cabra lifted H2 and CH4 flames (Cabra, et al., 2002, “Simultaneous Laser Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow,” Proc. Combust. Inst., 29(2), pp. 1881–1888; Lifted CH4/Air Jet Flame in a Vitiated Coflow, http://www.me.berkeley.edu/cal/vcb/data/VCMAData.html) where the reacting flow associated with the central jet exhibits similar chemical kinetics, heat transfer, and molecular transport as recirculation burners without the complex recirculating fluid mechanics. The fourth flame considered is a Sandia flame D (Barlow et al., 2005, “Piloted Methane/Air Jet Flames: Scalar Structure and Transport Effects,” Combust. Flame, 143, pp. 433–449), a piloted methane-air jet flame. It is observed that the simulation results predicted by the FGM model are more physical and accurate compared to the LFM in all the flames presented in this work. The autoignition-controlled flame lift-off is also captured well in the cases of lifted flames using the FGM model.

References

References
1.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(2), pp.
119
192
.10.1016/0360-1285(85)90002-4
2.
Peters
,
N.
,
1986
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Proc. Combust. Inst.
,
21
(1), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
3.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modeling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Tech.
,
161
(1), pp.
113
137
.10.1080/00102200008935814
4.
van Oijen
,
J. A.
,
Lammers
,
F. A.
, and
de Goey
,
L. P. H.
,
2001
, “
Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(3), pp.
2124
2134
.10.1016/S0010-2180(01)00316-9
5.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2002
, “
Modelling of Premixed Counter-Flow Flames Using the Flamelet-Generated Manifold Method
,”
Combust. Theory Model
,
6
(
3
), pp.
463
478
.10.1088/1364-7830/6/3/305
6.
Nguyen
,
P. D.
,
Vervisch
,
L.
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(1), pp.
43
61
.10.1016/j.combustflame.2009.07.008
7.
Vreman
,
A. W.
,
Albrecht
,
B. A.
,
van Oijen
,
J. A.
,
de
Goey
,
L. P. H.
, and
Bastiaans
,
R. J. M.
,
2008
, “
Premixed and Nonpremixed Generated Manifolds in Large-Eddy Simulation of Sandia Flame D and F
,”
Combust. Flame
,
153
(
3
), pp.
394
416
.10.1016/j.combustflame.2008.01.009
8.
Delhaye
,
S.
,
Somers
,
L. M. T.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2008
, “
Incorporating Unsteady Flow-Effects in Flamelet-Generated Manifolds
,”
Combust. Flame
,
155
(
1–2
), pp.
133
144
.10.1016/j.combustflame.2008.03.023
9.
Bekdemir
,
C.
,
Somers
,
L. M. T.
, and
de Goey
,
L. P. H.
, “
Modeling Diesel Engine Combustion Using Pressure Dependent Flamelet Generated Manifolds
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2887
2894
.10.1016/j.proci.2010.07.091
10.
Bongers
,
H.
,
van Oijen
,
J. A.
,
Somers
,
L. M. T.
, and
de Goey
,
L. P. H.
,
2005
, “
The Flamelet-Generated Manifold Method Applied to Steady Planar Partially Premixed Counter-Flow Flames
,”
Combust. Sci. Tech.
,
177
(
12
), pp.
2373
2393
.10.1080/00102200500241198
11.
Delhaye
,
S.
,
Somers
,
L. M. T.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2009
, “
Incorporating Unsteady Flow-Effects Beyond the Extinction Limit in Flamelet-Generated Manifolds
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1051
1058
.10.1016/j.proci.2008.06.111
12.
“ANSYS—Simulation Driven Product Development,” 2013, ANSYS Inc., Canonsburg, PA, http://www.ansys.com
13.
“GRI-Mech 3.0,” 1999, University of California-Berkeley, Berkeley, CA, http://www.me.berkeley.edu/gri_mech/version30/text30.html
14.
Cabra
,
R
,
Myhrvold
,
T.
,
Chen
,
J. Y.
,
Dibble
,
R. W.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2002
, “
Simultaneous Laser Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1881
1888
.10.1016/S1540-7489(02)80228-0
15.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
16.
Cabra, R., Karpetis, A., and Barlow, R., 2002, “Lifted CH4/Air Jet Flame in a Vitiated Coflow,” University of California-Berkeley, Berkeley, CA,
http://
www.me.berkeley.edu/cal/vcb/data/VCMAData.html
17.
Cabra
,
R.
,
Chen
,
J. Y.
,
Dibble
,
R. W.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2005
, “
Lifted Methane–Air Jet Flames in a Vitiated Coflow
,”
Combust. Flame
,
143
(
4
), pp.
491
506
.10.1016/j.combustflame.2005.08.019
18.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
(4), pp.
602
608
.10.1115/1.3245174
19.
Barlow
,
R. S.
,
Frank
,
J. H.
,
Karpetis
,
A. N.
, and
Chen
,
J. H.
,
2005
, “
Piloted Methane/Air Jet Flames: Scalar Structure and Transport Effects
,”
Combust. Flame
,
143
(4), pp.
433
449
.10.1016/j.combustflame.2005.08.017
20.
Barlow, R., and Frank, J., 2003, “Sandia/TUD Piloted CH4/Air Jet Flames,” Sandia National Laboratories, Livermore, CA, http://www.sandia.gov/TNF/DataArch/FlameD.html
21.
Gordon
,
R. L.
,
Marsi
,
A. R.
,
Pope
,
S. B.
, and
Goldin
,
G. M.
,
2007
, “
A Numerical Study of Auto-Ignition in Turbulent Lifted Flames Issuing Into a Vitiated Co-Flow
,”
Combust. Theory Model
,
11
(
3
), pp.
351
376
.10.1080/13647830600903472
You do not currently have access to this content.