The first vane leading edge film cooling is challenging because of the highest thermal load and the complex flow interaction between the hot mainstream gas and the coolant flow. This interaction varies significantly from the stagnation region to the regions of high curvature and acceleration further downstream. Additionally, in industrial gas turbines with multiple combustor chambers around the annulus the first vane leading edges may also be exposed to large wake disturbances shed from the upstream combustor walls. The influence of these vortical structures on the first vane leading edge film cooling is numerically analyzed in this paper. In order to assess the capabilities of the flow solver TBLOCK to simulate these complex interactions an experimental test case is modeled numerically. The test case is available in the open literature and consists of a cylindrical leading edge and two rows of film cooling holes representative of industrial practice. A LES turbulence modeling strategy with the WALE subgrid scale (SGS) model is applied and compared against experimental results. Based on this validation it is decided to analyze also the wake–leading edge interaction, dominated by large scale unsteady vortical structures, using the same WALE subgrid scale LES model. The initial flow domain with the cylindrical leading edge and cooling holes is extended to incorporate the effect of the combustor wall, which is modeled as a flat plate with a square trailing edge. The location and the size of the plate are scaled to be representative of industrial practice: the plate is located upstream from the leading edge at a distance twice the leading edge diameter, and the thickness of the plate is one half of the leading edge diameter. Two different clockwise positions of the vertical combustor wall model were investigated and compared with the datum configuration: the former where the axis of the plate and the leading edge are aligned (central wake location), the latter with the combustor wall circumferentially shifted up by a quarter of the leading edge diameter (circumferentially shifted wake location). Numerical predictions show that the shed vortices from the combustor wall trailing edge have a highly detrimental effect on the leading edge film cooling by periodically removing the coolant flow from the leading edge surface. This results in an increased unsteady thermal load. These negative effects are less significant in the case of circumferentially shifted wake, due to the combined action of both shed vortices.

References

References
1.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.10.1115/1.3262169
2.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.10.1115/1.2928023
3.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
,
1997
, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,” ASME Paper No. 97-GT-296.
4.
Funazaki
,
K.
,
Yakota
,
M.
, and
Yamawaki
,
S.
,
1997
, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
119
(
2
), pp.
292
301
.10.1115/1.2841112
5.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
(
4
), pp.
808
817
.10.1115/1.2841793
6.
Li
,
S. H.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling
,”
ASME
Paper No. GT2011-45925.10.1115/GT2011-45925
7.
Grag
,
V. K.
, and
Gaugler
,
R. E.
,
1997
, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
119
(
2
), pp.
343
351
.10.1115/1.2841117
8.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.10.1115/1.2929422
9.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.10.1115/1.555433
10.
Heidmann
,
J. D.
,
Rigby
,
D. L.
, and
Ameri
,
A. A.
,
2000
, “
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
,
122
(
1
), pp.
348
359
.10.1115/1.555450
11.
Acharya
,
S.
,
2007
, “
Numerical Modelling Methods for Film Cooling
,” Film Cooling Science and Technology for Gas Turbines: State-of-the-Art Experimental and Computational Knowledge (VKI Lecture Series 2007–06), April 16–20, von Karman Institute, Rhode-St-Genese, Belgium.
12.
Acharya
,
S.
,
2007
, “
Steady and Unsteady RANS Film Cooling Predictions
,” Film Cooling Science and Technology for Gas Turbines: State-of-the-Art Experimental and Computational Knowledge (VKI Lecture Series 2007–06), April 16–20, von Karman Institute, Rhode-St-Genese, Belgium.
13.
Holloway
,
D. S.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2005
, “
Computational Study of Jet-in-Crossflow and Film Cooling Using a New Unsteady-Based Turbulence Model
,”
ASME
Paper No. GT2005-68155.10.1115/GT2005-68155
14.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
M.
,
2010
, “
Aerodynamic Comparison and Validation of RANS, URANS and SAS Simulations of Flat Plate Film-Cooling
,”
ASME
Paper No. GT2010-22475.10.1115/GT2010-22475
15.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
, and
Facchini
,
B.
,
2012
, “
Numerical Benchmark of Non-Conventional RANS Turbulence Models for Film and Effusion Cooling
,”
ASME
Paper No. GT2012-68794.10.1115/GT2012-68794
16.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
1999
, “
Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling
,”
Proc. Inst. Mech. Eng.
,
213
(Part A),
pp 103
118
.10.1243/0957650991537473
17.
Lin
,
Y. L.
,
Stephens
,
M. A.
, and
Shih
,
T. I. P.
,
1997
, “
Film Cooling of a Cylindrical Leading Edge With Injection Through Rows of Compound Angle Holes
,” ASME Paper No. 97-GT-298.
18.
York
,
W. D.
, and
Leylek
,
J. H.
,
2002
, “
Leading Edge Film Cooling Physics—Part I: Adiabatic Effectiveness
,”
ASME
Paper No. GT2002-30166.10.1115/GT2002-30166
19.
York
,
W. D.
, and
Leylek
,
J. H.
,
2002
, “
Leading Edge Film Cooling Physics—Part II: Heat Transfer Coefficient
,”
ASME
Paper No. GT2002-30167.10.1115/GT2002-30167
20.
Azzi
,
A.
, and
Lakehal
,
D.
,
2001
, “
Perspective in Modelling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Model
,” International Mechanical Engineering Congress and Exposition (IMECE'01), New York, November 11–16, ASME Paper No. IMECE2001-HTD-24317.
21.
Takahashi
,
T.
,
Funazaki
,
K.
,
Salleh
,
H. B.
,
Sakai
,
E.
, and
Watanabe
,
K.
,
2010
, “
Assessment of URANS and DES for Predictions of Leading Edge Film Cooling
,”
ASME
Paper No. GT2010-22325.10.1115/GT2010-22325
22.
Funazaki
,
K.
,
Kawabata
,
H.
,
Takahashi
,
D.
, and
Okita
,
Y.
,
2012
, “
Experimental and Numerical Study on Leading Edge Film Cooling Performance: Effects of Hole Exit Shape and Freestream Turbulence
,”
ASME
Paper No. GT2012-68217.10.1115/GT2012-68217
23.
Acharya
,
S.
, and
Tyagi
,
M.
,
2007
, “
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) for Film Cooling
,” Film Cooling Science and Technology for Gas Turbines: State-of-the-Art Experimental and Computational Knowledge (VKI Lecture Series 2007–06), April 16–20, von Karman Institute, Rhode-St-Genese, Belgium.
24.
Acharya
,
S.
, and
Tyagi
,
M.
,
2003
, “
Large Eddy Simulation (LES) for Film Cooling Flow From an Inclined Cylinder Jet
,”
ASME
Paper No. GT2003-38633.10.1115/GT2003-38633
25.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2008
, “
Assessment of a Film-Cooling Flow Structure by Large-Eddy Simulation
,”
J. Turb.
,
9
, p.
N29
.10.1080/14685240802232855
26.
Graf
,
L.
, and
Kleiser
,
L.
,
2010
, “
Large-Eddy Simulation of Double-Row Compound-Angle Film Cooling: Setup and Validation
,”
Comput. Fluids
,
43
(
1
), pp.
58–67
.10.1016/j.compfluid.2010.09.032
27.
Fujimoto
,
S.
,
2012
, “
Large Eddy Simulation of Film Cooling Flows Using Octree Hexahedral Meshes
,”
ASME
Paper No. GT2012-70090.10.1115/GT2012-70090
28.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2007
, “
Large Eddy Simulation of Leading Edge Film Cooling—Part I: Computational Domain and Effect of Coolant Pipe Inlet Condition
,”
ASME
Paper No. GT2007-27689.10.1115/GT2007-27689
29.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2007
, “
Large Eddy Simulation of Leading Edge Film Cooling—Part II: Heat Transfer and Blowing Ratio
,”
ASME
Paper No. GT2007-27690.10.1115/GT2007-27690
30.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large-Eddy Simulations of Leading Edge Film Cooling: Analysis of Flow Structures, Effectiveness, and Heat Transfer Coefficient
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
1
17
.10.1016/j.ijheatfluidflow.2007.05.001
31.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer—LES Investigation
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
857
873
.10.1016/j.ijheatfluidflow.2008.02.007
32.
Rosic
,
B.
, and
Klostermeier
,
C.
,
2009
, “
Combustor Wall and the First Vane Leading Edge Film Cooling Interaction in an Industrial Gas Turbine
,” 14th International Conference on Fluid Flow Technologies (CMFF-09), Budapest, Hungary, September 9–12.
33.
Rosic
,
B.
,
Denton
,
J. D.
,
Horlock
,
J. H.
, and
Uchida
,
S.
,
2010
, “
Integrated Combustor and Vane Concept in Gas Turbines
,”
ASME
Paper No. GT2010-23170.10.1115/GT2010-23170
34.
Aslanidou
, I
.
,
Rosic
,
B.
,
Kanjirakkad
,
V.
, and
Uchida
,
S.
,
2012
, “
Leading Edge Shielding Concept in Gas Turbines With Can Combustors
,”
ASME
Paper No. GT2012-68644.10.1115/GT2012-68644
35.
Klostermeier
,
C.
,
2008
, “
Investigation Into the Capability of Large Eddy Simulation for Turbomachinery Design
,” Ph.D. thesis, Cambridge University Engineering Department, Cambridge, UK.
36.
Piomelli
,
U.
, and
Chasnow
,
J. R.
,
1996
, “
Large-Eddy Simulations: Theory and Applications
,”
Transition and Turbulence Modelling
,
D.
Henningson
,
M.
Hallbaeck
,
H.
Alfreddson
, and
A.
Johansson
, eds.,
Kluwer Academic
,
Dordrecht, Netherlands
, pp.
269
333
.
37.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
You do not currently have access to this content.