Nonuniform combustor outlet flows have been demonstrated to have significant impact on the first and second stage turbine aerothermal performance. Rich-burn combustors, which generally have pronounced temperature profiles and weak swirl profiles, primarily affect the heat load in the vane but both the heat load and aerodynamics of the rotor. Lean burn combustors, in contrast, generally have a strong swirl profile which has an additional significant impact on the vane aerodynamics which should be accounted for in the design process. There has been a move towards lean burn combustor designs to reduce NOx emissions. There is also increasing interest in fully integrated design processes which consider the impact of the combustor flow on the design of the high pressure vane and rotor aerodynamics and cooling. There are a number of current large research projects in scaled (low temperature and pressure) turbine facilities which aim to provide validation data and physical understanding to support this design philosophy. There is a small body of literature devoted to rich burn combustor simulator design but no open literature on the topic of lean burn simulator design. The particular problem is that in nonreacting, highly swirling and diffusing flows, vortex instability in the form of a precessing vortex core or vortex breakdown is unlikely to be well matched to the reacting case. In reacting combustors the flow is stabilized by heat release, but in low temperature simulators other methods for stabilizing the flow must be employed. Unsteady Reynolds-averaged Navier–Stokes and large eddy simulation have shown promise in modeling swirling flows with unstable features. These design issues form the subject of this paper.

References

References
1.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.10.1115/1.2987240
2.
Schwab
,
J. R.
,
Stabe
,
R. G.
, and
Whitney
,
W. J.
,
1983
, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With Nonunifom Inlet Radial Temperature Profiles
,” NASA Technical Memorandum Report No. 83431,
AIAA
Paper No. 83-1175.10.2514/6.1983-1175
3.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.10.2514/3.23116
4.
Haldeman
,
C.
,
1989
, “
An Experimental Study of Radial Temperature Profile Effects on Turbine Tip Shroud Heat Transfer
,” M.S. thesis, MIT, Cambridge, MA.
5.
Shang
,
T.
, and
Epstein
,
A. H.
,
1996
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME
Paper No. 96-GT-118.
6.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomachinery
,
131
(
2
), p.
021010
.10.1115/1.2950076
7.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.10.1115/1.2950051
8.
Povey
,
T.
, and
Qureshi
,
I.
,
2008
, “
A Hot-Streak (Combustor) Simulator Suited to Aerodynamic Performance Measurements
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
6
), pp.
705
720
.10.1243/09544100JAERO363
9.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2004
, “
Developing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,”
ASME
Paper No. GT2004-41685.10.1115/GT2004-41685
10.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.10.1115/1.4002039
11.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
.10.1115/1.4002987
12.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2010
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine: Part III—Impact of Hot Streak Characteristics on Blade Row Heat Flux
,”
ASME
Paper No. GT2010-43994.10.1115/GT2010-43994
13.
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
A Combustor-Representative Swirl Simulator for a Transonic Turbine Research Facility
,”
Proc. Inst. Mech. Eng., Part G
,
225
(
7
), pp.
737
748
.10.1177/0954410011400817
14.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Kent, UK
.
15.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
16.
Harvey
,
J. K.
,
1962
, “
Some Observations of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(4), pp.
585
592
.10.1017/S0022112062001470
17.
Faler
,
J. H.
, and
Leibovich
,
S.
, 1977, “
Disrupted States of Vortex Flow and Vortex Breakdown
,”
Phys. Fluids
,
20
(9), pp 1385–1400.10.1063/1.862033
18.
Wang
,
P.
,
Bai
,
X. S.
, and
Wessman
,
M.
,
2004
, “
Large Eddy Simulation and Experimental Studies of a Confined Turbulent Swirling Flow
,”
Phys. Fluids
,
16
(
9
), pp.
3306
3324
.10.1063/1.1769420
19.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
, and
Okulov
,
V. L.
,
2007
, Theory of Concentrated Vortices, Springer-Verlag, Berlin, pp. 378–444.
20.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S.
, and
Mongiah
,
C.
,
2007
, “
Large-Eddy Simulations of Gas-Turbine Swirl Injector Flow Dynamics
,”
J. Fluid Mech.
,
583
, pp. 99–122.10.1017/S0022112007006155
21.
Roux
,
S.
,
Lartigue
,
G.
, and
Poinsot
,
T.
,
2005
, “
Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations
,”
Combust. Flame
,
141
(
1–2
) pp.
40
54
.10.1016/j.combustflame.2004.12.007
22.
Selle
,
L.
,
Lartigue
,
G.
, and
Poinsot
,
T.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
23.
Guo
,
B.
,
Langrish
,
T. A. G.
, and
Fletcher
,
D. F.
,
2001
, “
Simulation of Turbulent Swirl Flow in an Axisymmetric Sudden Expansion
,”
AIAA J.
,
39
(1), pp.
96
102
.10.2514/2.1275
24.
Wankhede
,
M. J.
,
Bressloff
,
N. W.
,
Keane
,
A. J.
,
Caracciolo
,
L.
, and
Zedda
,
M.
,
2010
, “
An Analysis of Unstable Flow Dynamics and Flashback Mechanism Inside a Swirl-Stabilised Lean Burn Combustor
,”
ASME
Paper No. GT2010-22253.10.1115/GT2010-22253
25.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Further Characterization of the Disturbance Field in a Transversely Excited Swirl-Stabilized Flame
,”
ASME
Paper No. GT2011-45221.10.1115/GT2011-45221
26.
Cameron
,
C. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
1989
, “
A Model Gas Turbine Combustor With Wall Jets and Optical Access for Turbulent Mixing, Fuel Effects, and Spray Studies
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
465
474
.10.1016/S0082-0784(89)80053-0
27.
Lu
,
X.
,
Wang
,
S.
, and
Sung
,
H.
,
2005
, “
Large-Eddy Simulations of Turbulent Swirling Flows Injected into a Dump Chamber
,”
J. Fluid Mech.
,
527
pp.
171
195
.10.1017/S0022112004002927
28.
Wegner
,
B.
,
Maltsev
,
A.
, and
Schneider
,
C.
,
2004
, “
Assessment of Unsteady RANS in Predicting Swirl Flow Instability Based on LES and Experiments
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
528
536
.10.1016/j.ijheatfluidflow.2004.02.019
29.
Sloan
,
D. G.
,
Smith
,
P. J.
, and
Smoot
,
L. D.
,
1986
, “
Modeling of Swirl in Turbulent Flow Systems
,”
Prog. Energy Combust. Sci.
,
12
(
3
), pp. 163–125.10.1016/0360-1285(86)90016-X
30.
Yang
,
S. L.
,
Siow
,
Y. K.
,
Peschke
,
B. D.
,
2003
, “
Numerical Study of Non-Reacting Gas Turbine Combustor Swirl Flow Using Reynolds Stress Model
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
804
811
.10.1115/1.1560706
31.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Hogg
,
S. I.
,
Anderson
,
S. J.
, and
Smith
,
G. C.
,
1994
, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,”
ASME
Paper No. 94-GT-277.
32.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
,
2003
, “
The Design and Performance of a Transonic Flow Deswirling System—An Application of Current CFD Design Techniques Tested Against Model and Full-Scale Experiments
,”
Advances of CFD in Fluid Machinery Design
,
R. L.
Elder
,
A.
Toulidakis
, and
M. K.
Yates
, eds.,
Professional Engineering Publishing
,
London, UK
, pp.
65
94
.
33.
Goodisman
,
M. I.
,
Oldfield
,
M. L. G.
,
Kingcombe
,
R. C.
,
Jones
,
T. V.
,
Ainsworth
,
R. W.
, and
Brooks
,
A. J.
,
1992
, “
An Axial Turbobrake
,”
ASME J. Turbomach.
,
114
(2), pp.
419
425
.10.1115/1.2929160
34.
Mitchel
,
M. A.
, and
Delery
,
J.
,
2001
Research Into Vortex Breakdown Control
,”
Prog. Aerosp. Sci.
,
37
(4), pp.
385
418
.10.1016/S0376-0421(01)00010-0
35.
Shahpar
,
S.
, and
Caloni
,
S.
,
2012
, “
Aerodynamic Optimization of High Pressure Turbines for Lean-Burn Combustion System
,”
ASME
Paper No. GT2012-69228.10.1115/GT2012-69228
36.
Kilik
,
E.
,
1976
, “
The Influence of Swirler Design Parameters on the Aerodynamic of the Downstream Recirculation Region
,” M.S. thesis, Cranfield Institute of Technology, Bedfordshire, UK, available at: https://dspace.lib.cranfield.ac.uk/handle/1826/4612
37.
Jawarneh
,
A. M.
Vatistas
,
G. H.
, “
Reynolds Stress Model in the Prediction of Confined Turbulent Swirling Flows
”,
ASME J. Fluids Eng.
,
128
(6), pp.
1377
82
.10.1115/1.2354530
38.
Herrada
,
M. A.
, and
Shtern
,
V.
,
2003
, “
Vortex Breakdown Control by Adding Near-Axis Swirl and Temperature Gradients
,”
Phys. Rev. E
,
68
(
4 Pt 1
) p.
041202
.10.1103/PhysRevE.68.041202
39.
Lo Jacono
,
D.
,
Sørensen
,
J. N.
, and
Thompson
,
M. C.
,
2008
, “
Control of Vortex Breakdown in a Closed Cylinder With a Small Rotating Rod
,”
J. Fluids Struct.
,
24
(
8
) pp.
1278
1283
.10.1016/j.jfluidstructs.2008.06.015
40.
Jochmann
,
P.
,
Sinigersky
,
A.
,
Koch
,
R.
, and
Bauer
H.-J.
,
2005
, “
URANS Prediction of Flow Instabilities of a Novel Atomizer Combustor Configuration
,”
ASME
Paper No. GT2005-68072.10.1115/GT2005-68072
You do not currently have access to this content.