Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray combustion. The experimental investigation has been conducted in a modified OP16 gas turbine combustor, which is a reverse-flow tubular combustor of the diffusion type. Bioethanol and diesel burning experiments have been performed at atmospheric pressure with a thermal input ranging from 29 to 59 kW. Exhaust gas temperature and emissions (CO, CO2, O2, NOx) were measured at various fuel flow rates while keeping the air flow rate and air temperature constant. In addition, the temperature profile of the combustor liner has been determined by applying thermochromic paint. CFD simulations have been performed with ethanol for five different operating conditions using ANSYS FLUENT. The simulations are based on a 3D RANS code. Fuel droplets representing the fuel spray are tracked throughout the domain while they interact with the gas phase. A liner temperature measurement has been used to account for heat transfer through the flame tube wall. Detailed combustion chemistry is included by using the steady laminar flamelet model. Comparison between diesel and bioethanol burning tests show similar CO emissions, but NOx concentrations are lower for bioethanol. The CFD results for CO2 and O2 are in good agreement, proving the overall integrity of the model. NOx concentrations were found to be in fair agreement, but the model failed to predict CO levels in the exhaust gas. Simulations of the fuel spray suggest that some liner wetting might have occurred. However, this finding could not be clearly confirmed by the test data.

References

References
1.
Balat
,
M.
, and
Balat
,
H.
,
2009
, “
Recent Trends in Global Production and Utilization of Bio-Ethanol Fuel
,”
Appl. Energy
,
86
(
11
), pp.
2273
2282
.10.1016/j.apenergy.2009.03.015
2.
Lupandin
,
V.
,
Thamburaj
,
R.
, and
Nikolayev
,
A.
,
2005
, “
Test Results of the OGT2500 Gas Turbine Engine Running on Alternative Fuels: BioOil, Ethanol, BioDiesel and Crude Oil
,” ASME Turbo Expo 2005, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68488, pp.
421
426
.10.1115/GT2005-68488
3.
Razbin
,
V.
, and
Coyle
,
I.
,
2004
, “
Emissions Tests on Magellan Aerospace Orenda Corporation
, OGT 2500 Gas Turbine,” CETC Energy Technology Centre, Ottawa, Canada, Report No. CETC-O-ACT-04-043-1 (CF).
4.
Moliere
,
M.
,
Vierling
,
M.
,
Aboujaib
,
M.
,
Patil
,
P.
,
Eranki
,
A.
,
Campbell
,
A.
,
Trivedi
,
R.
,
Nainani
,
A.
,
Roy
,
S.
, and
Pandey
,
N.
,
2009
, “
Gas Turbines in Alternative Fuel Applications: Bio-Ethanol Field Test
,” ASME Turbo Expo 2009, Orlando, FL, June 8-12,
ASME
Paper No. GT2009-59047, pp.
341
348
.10.1115/GT2009-59047
5.
Breaux
,
B. B.
, and
Acharya
,
S.
,
2013
, “
The Effect of Elevated Water Content on Swirl-Stabilized Ethanol/Air Flames
,”
Fuel
,
105
, pp.
90
102
.10.1016/j.fuel.2012.07.051
6.
Laranci
,
P.
,
Bidini
,
G.
,
Fantozzi
,
F.
, and
Desideri
,
U.
,
2013
, “
CFD Analysis of an Annular Micro Gas Turbine Combustion Chamber Fuelled With Liquid Biofuels: Preliminary Results With Bioethanol
,” ASME Turbo Expo 2013, San Antonio, TX, June 3–7,
ASME
Paper No. GT2013-95696.10.1115/GT2013-95696
7.
Fluent Inc.
,
2006
,
Fluent 6.3 User's Guide
, Fluent Inc., Lebanon, NH.
8.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
9.
Engdar
,
U.
, and
Klingmann
,
J.
,
2002
, “
Investigation of Two-Equation Turbulence Models Applied to a Confined Axis-Symmetric Swirling Flow
,” ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, August 5–9,
ASME
Paper No. PVP2002-1590, pp. 199–206.10.1115/PVP2002-1590
10.
Cengel
,
Y.
,
2007
,
Heat and Mass Transfer: A Practical Approach
,
3rd ed.
,
McGraw-Hill
,
Boston, MA
.
11.
Merci
,
B.
,
Roekaerts
,
D.
, and
Sadiki
,
A.
,
2011
,
Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion: Proceedings of the 1st International Workshop on Turbulent Spray Combustion
, Vol. 17,
Springer, New York
.
12.
Faeth
,
G. M.
,
Hsiang
,
L. P.
, and
Wu
,
P. K.
,
1995
, “
Structure and Breakup Properties of Sprays
,”
Int. J. Multiphase Flow
,
21(S)
, pp.
99
127
.10.1016/0301-9322(95)00059-7
13.
Moin
,
P.
, and
Apte
,
S. V.
,
2006
, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
,
44
(
4
), pp.
698
708
.10.2514/1.14606
14.
Ranade
,
V.
,
2001
,
Computational Flow Modeling for Chemical Reactor Engineering
, Vol. 5,
Academic
,
New York
.
15.
Ashgriz
,
N. E.
,
2011
,
Handbook of Atomization and Sprays: Theory and Applications.
Springer
,
New York
.
16.
Faeth
,
G. M.
,
1977
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
,
3
(
4
), pp.
191
224
.10.1016/0360-1285(77)90012-0
17.
Tseng
,
C. C.
, and
Viskanta
,
R.
,
2005
, “
Effect of Radiation Absorption on Fuel Droplet Evaporation
,”
Combust. Sci. Technol.
,
177
(
8
), pp.
1511
1542
.10.1080/00102200590956696
18.
Godsave
,
G. A. E.
, 1953, “
Burning of Fuel Droplets
,”
Fourth Symposium (International) on Combustion
, Vol. 4,
Williams and Wilkins
,
Baltimore, MD
, pp.
818
830
.
19.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
New York
.
20.
El-Shanawany
,
M. S.
, and
Lefebvre
,
A. H.
,
1980
, “
Airblast Atomization: Effect of Linear Scale on Mean Drop Size
,”
J. Energy
,
4
(
4
), pp.
184
189
.10.2514/3.62472
21.
Liu
,
H.
,
1999
,
Science and Engineering of Droplets: Fundamentals and Applications
.
Noyes Publications
,
Norwich, NY
.
22.
Lefebvre
,
A.
,
1988
,
Atomization and Sprays
,
CRC Press
,
New York
.
23.
Röhl
,
O.
, and
Peters
,
N.
, 2009, “
A Reduced Mechanism for Ethanol Oxidation
,”
4th European Combustion Meeting (ECM 2009), Vienna, Austria, April 14–17
, pp.
14
17
.
24.
Lefebvre
,
A. H.
,
1984
, “
Flame Radiation in Gas Turbine Combustion Chambers
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1493
1510
.10.1016/0017-9310(84)90262-X
25.
Lefebvre
,
A. H.
,
1980
, “
Airblast Atomization
,”
Progress Energy Combust. Sci.
,
6
(
3
), pp.
233
261
.10.1016/0360-1285(80)90017-9
26.
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “
Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer
,” ASME Turbo Expo, San Antonio, TX, June 3-7,
ASME
Paper No. GT2013-94033.10.1115/GT2013-94033
27.
Maqua
,
C.
,
Castanet
,
G.
,
Grisch
,
F.
,
Lemoine
,
F.
,
Kristyadi
,
T.
, and
Sazhin
,
S. S.
,
2008
, “
Monodisperse Droplet Heating and Evaporation: Experimental Study and Modelling
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3932
3945
.10.1016/j.ijheatmasstransfer.2007.12.011
28.
Lavieille
,
P.
,
Lemoine
,
F.
,
Lavergne
,
G.
, and
Lebouche
,
M.
,
2001
, “
Evaporating and Combusting Droplet Temperature Measurements Using Two-Color Laser-Induced Fluorescence
,”
Exp. Fluids
,
31
(
1
), pp.
45
55
.10.1007/s003480000257
29.
Goldsmith
,
M.
,
1955
, “
The Burning of Single Drops of Fuel in Oxidizing Atmospheres
,” Ph.D. dissertation, California Institute of Technology, Pasadena, CA.
30.
Wood
,
B. J.
, and
Wise
,
H.
,
1957
, “
Measurement of the Burning Constant of a Fuel Drop
,”
J. Applied Phys.
,
28
(
9
), pp.
1068
1068
.10.1063/1.1722910
You do not currently have access to this content.