Crack failures continually occur in shafts of turbine generator, where grid disturbance is an important cause. To estimate influences of grid disturbance, coupled torsional vibration and fatigue damage of turbine generator shafts are analyzed in this work, with a case study in a 600MW steam unit in China. The analysis is the following: (i) coupled system is established with generator model and finite element method (FEM)-based shafts model, where the grid disturbance is signified by fluctuation of generator outputs and the shafts model is formed with lumped mass model (LMM) and continuous mass model (CMM), respectively; (ii) fatigue damage is evaluated in the weak location of the shafts through local torque response computation, stress calculation, and fatigue accumulation; and (iii) failure-prevention approach is formed by solving the inverse problem in fatigue evaluation. The results indicate that the proposed scheme with continuous mass model can acquire more detailed and accurate local responses throughout the shafts compared with the scheme without coupled effects or the scheme using lumped mass model. Using the coupled torsional vibration scheme, fatigue damage caused by grid disturbance is evaluated and failure prevention rule is formed.

References

References
1.
Jiang
,
D.
,
Hong
,
L.
,
Wang
,
Z.
, and
Xie
,
X.
,
2009
, “
Torsional Vibration Analysis and Stress Calculation for the Fault 600MW Steam Turbine Generator Shaft System
,”
ASME
Paper No. DETC2009-86854.10.1115/DETC2009-86854
2.
Dorfman
,
L. S.
, and
Trubelja
,
M.
,
1999
, “
Torsional Monitoring of Turbine-Generators for Incipient Failure Detection
,”
Sixth EPRI Steam Turbine Generator Workshop
, St. Louis, MO, August 17–20.
3.
Lebold
,
M. S.
,
Maynard
,
K. P.
,
Trethewey
,
M. W.
,
Bieryla
,
D. J.
,
Lissenden
,
C. J.
,
Tissot
,
S. P.
,
Verrier
,
P.
, and
Metz
,
J.
,
2003
, “
Technology Development for Shaft Crack Detection in Rotating Equipment
,”
EPRI International Maintenance Conference
, Chicago, IL, August 18–20.
4.
Szász
,
G.
, and
Guindon
,
E. J.
,
2003
, “
Using Torsional Vibration Spectra to Monitor Machinery Rotor Integrity
,”
ASME
Paper No. IJPGC2003-40162.10.1115/IJPGC2003-40162
5.
Stein
,
J.
,
2002
, “
Retaining Ring Cracking at Wisconsin Electric Power Company's Port Washington Unit 1—Root Cause Analysis Report
,” Electric Power Research Institute, Palo Alto, CA, and Wisconsin Electric Power Company, Milwaukee, WI, EPRI Tech. Rep. No. 1007001.
6.
Rosario
,
D. A.
, and
Khalid
,
T.
,
2005
, “
Generator Shaft Keyway Cracking Failure Investigation
,”
9th EPRI Steam Turbine/Generator Workshop
, Denver, CO, August 22–24.
7.
Walker
,
D.
,
Bowler
,
C.
,
Jackson
,
R.
, and
Hodges
,
D.
,
1975
, “
Results of Subsynchronous Resonance Test at Mohave
,”
IEEE Trans. Power Appar. Syst.
,
94
(
5
), pp.
1878
1889
.10.1109/T-PAS.1975.32034
8.
Ishida
,
Y.
,
2008
, “
Cracked Rotors: Industrial Machine Case Histories and Nonlinear Effects Shown by Simple Jeffcott Rotor
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
805
817
.10.1016/j.ymssp.2007.11.005
9.
Pennacchi
,
P.
, and
Vania
,
A.
,
2008
, “
Diagnostics of a Crack in a Load Coupling of a Gas Turbine Using the Machine Model and the Analysis of the Shaft Vibrations
,”
Mech. Syst. Signal Process.
,
22
(
5
), pp.
1157
1178
.10.1016/j.ymssp.2007.10.005
10.
Bachschmid
,
N.
,
Pennacchi
,
P.
, and
Tanzi
,
E.
,
2010
,
Cracked Rotors: A Survey on Static and Dynamic Behaviour Including Modelling and Diagnosis
,
Springer
,
New York
.
11.
IEEE Subsynchronous Resonance Working Group of the System Dynamic Performance Subcomittee
,
1985
, “
Terms, Definitions and Symbols for Subsynchronous Oscillations
,”
IEEE Trans. Power Appar. Syst.
,
104
(
6
), pp.
1326
1334
.10.1109/TPAS.1985.319152
12.
Kalcon
,
G.
,
Adam
,
G.
,
Anaya-Lara
,
O.
,
Lo
,
S.
, and
Uhlen
,
K.
,
2012
, “
Small-Signal Stability Analysis of Multi-Terminal VSC-Based DC Transmission Systems
,”
IEEE Trans. Power Syst.
,
27
(
4
), pp.
1818
1830
.10.1109/TPWRS.2012.2190531
13.
Xie
,
X.
,
Liu
,
P.
,
Bai
,
K.
, and
Han
,
Y.
,
2013
, “
Applying Improved Blocking Filters to the SSR Problem of the Tuoketuo Power System
,”
IEEE Trans. Power Deliv.
,
28
(
1
), pp.
227
235
.10.1109/TPWRS.2012.2203322
14.
Xie
,
X.
,
Guo
,
X.
, and
Han
,
Y.
,
2011
, “
Mitigation of Multimodal SSR Using SEDC in the Shangdu Series-Compensated Power System
,”
IEEE Trans. Power Syst.
,
26
(
1
), pp.
384
391
.10.1109/TPWRS.2010.2047280
15.
Maljkovic
,
Z.
,
Stegic
,
M.
, and
Kuterovac
,
L.
,
2010
, “
Torsional Oscillations of the Turbine-Generator Due to Network Faults
,” 14th IEEE International Conference on Power Electronics and Motion Control (
EPE/PEMC
), Ohrid, Macedonia, September 6–8, pp.
82
85
10.1109/EPEPEMC.2010.5606642.
16.
Tsai
,
J.
,
Lin
,
C.
, and
Tsao
,
T.
,
2004
, “
Assessment of Long-Term Life Expenditure for Steam Turbine Shafts Due to Noncharacteristic Subharmonic Currents in Asynchronous Links
,”
IEEE Trans. Power Syst.
,
19
(
1
), pp.
507
516
.10.1109/TPWRS.2003.820704
17.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052501
.10.1115/1.4007783
18.
Yang
,
B.
, and
Chen
,
H.
,
1993
, “
Reduced-Order Shaft System Models of Turbogenerators
,”
IEEE Trans. Power Syst.
,
8
(
3
), pp.
1366
1374
.10.1109/59.260856
19.
IEEE Committee Report
,
1991
, “
Third Supplement to a Bibliography for the Study of Subsynchronous Resonance Between Rotating Machines and Power Systems
,”
IEEE Trans. Power Syst.
,
6
(
2
), pp.
830
833
.10.1109/59.76732
20.
Ni
,
Y.
,
Chen
,
S.
, and
Zhang
,
B.
,
2001
,
Theory and Analysis in Dynamic Power System
,
Tsinghua University
,
Beijing
.
21.
Wang
,
X. F.
,
2003
,
Analysis of Modern Electric Power System
,
Science
,
Beijing
.
22.
Grande-Moran
,
C.
, and
Brown
,
M.
,
1997
, “
Coherency-Based Low Order Models for Shaft Systems of Turbine-Generator Sets
,”
IEEE Trans. Energy Convers.
,
12
(
3
), pp.
217
224
.10.1109/60.629706
23.
Ricci
,
R.
,
Pennacchi
,
P.
,
Pesatori
,
E.
, and
Turozzi
,
G.
,
2010
, “
Modeling and Model Updating of Torsional Behavior of an Industrial Steam Turbo Generator
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
074501
.10.1115/1.4000287
24.
Wang
,
X. C.
,
2003
,
Finite Element Method
,
Tsinghua University
,
Beijing
.
25.
Ansys
,
2009
, ANSYS Release 12.1 Documentation, Ansys, Inc.,
Pittsburgh
, PA.
26.
Endo
,
T.
,
Mitsunaga
,
K.
, and
Nakagawa
,
H.
,
1967
, “
Fatigue of Metals Subjected to Varying Stress—Prediction of Fatigue Lives
,” Preliminary Proceedings of the Chugoku-Shikoku District Meeting, Japanese Society of Mechanical Engineers, Tokyo, pp.
41
44
.
27.
Rychlik
,
I.
,
1987
, “
A New Definition of the Rainflow Cycle Counting Method
,”
Int. J. Fatigue
,
9
(
2
), pp.
119
121
.10.1016/0142-1123(87)90054-5
28.
Chan
,
K. S.
,
Enright
,
M. P.
,
Golden
,
P. J.
,
Naboulsi
,
S.
,
Chandra
,
R.
, and
Pentz
,
A. C.
,
2012
, “
Probabilistic High-Cycle Fretting Fatigue Assessment of Gas Turbine Engine Components
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
062502
.10.1115/1.4005975
You do not currently have access to this content.