This study deals with modeling and simulation of the transient behavior of an Industrial Power Plant Gas Turbine (IPGT). The data used for model setup and validation were taken experimentally during the start-up procedure of a single-shaft heavy duty gas turbine. Two different models are developed and compared by using both a physics-based and a black-box approach, and are implemented by using the matlab© tools including Simulink and Neural Network toolbox, respectively. The Simulink model was constructed based on the thermodynamic and energy balance equations in matlab environment. The nonlinear autoregressive with exogenous inputs NARX model was set up by using the same data sets and subsequently applied to each of the data sets separately. The results showed that both Simulink and NARX models are capable of satisfactory prediction, if it is considered that the data used for model training and validation is experimental data taken during gas turbine normal operation by using its standard instrumentation.

References

References
1.
Jelali
,
M.
, and
Kroll
,
A.
,
2004
,
Hydraulic Servo-Systems: Modeling, Identification, and Control
,
Springer
,
New York
.
2.
Rowen
,
W. I.
,
1983
, “
Simplified Mathematical Representations of Heavy-Duty Gas Turbines
,”
ASME J. Eng. Power
,
105
(
4
), pp.
865
869
.10.1115/1.3227494
3.
Rowen
,
W. I.
,
1992
, “
Simplified Mathematical Representations of Single-Shaft Gas Turbines in Mechanical Derive Service
,”
Turbomach. Int.
,
33
(
5
), pp.
26
32
.
4.
Najjar
,
Y. S. H.
,
1994
, “
Performance of Single-Cycle Gas Turbine Engines in Two Modes of Operation
,”
Energy Convers. Manage.
,
35
(
5
), pp.
433
441
.10.1016/0196-8904(94)90101-5
5.
Hannett
,
L. N.
,
Jee
,
G.
, and
Fardanesh
,
B.
,
1995
, “
A Governer/Turbine Model for a Twin-Shaft Combustion Turbine
,”
IEEE Trans. Power Syst.
,
10
(
1
), pp.
133
140
.10.1109/59.373935
6.
Bettocchi
,
R.
,
Spina
,
P. R.
, and
Fabbri
,
F.
,
1996
, “
Dynamic Modeling of Single-Shaft Industrial Gas Turbine
,” ASME Paper No. 96-GT-332.
7.
Ricketts
,
B. E.
,
1997
, “
Modeling of a Gas Turbine: A Precursor to Adaptive Control
,” IEE Colloquium on Adaptive Controllers in Practice ‘97
(Digest No. 197/176)
, Coventry, UK, April 10, pp. 7/1–7/5.10.1049/ic:19970954
8.
Bianchi
,
M.
,
Peretto
,
A.
, and
Spina
,
P. R.
,
1998
, “
Modular Dynamic Model of Multi-Shaft Gas Turbine and Validation Test
,”
Proceedings of The Winter Annual Meeting of ASME
, New York, Vol.
38
, pp.
73
81
.
9.
Mostafavi
,
M.
,
Alaktiwi
,
A.
, and
Agnew
,
B.
,
1998
, “
Thermodynamic Analysis of Combined Open-Cycle Twin-Shaft Gas Turbine (Brayton Cycle) and Exhaust Gas Operated Absorption Refrigeration Unit
,”
Appl. Therm. Eng.
,
18
(
9–10
), pp.
847
856
.10.1016/S1359-4311(97)00105-1
10.
Nagpal
,
M.
,
Moshref
,
A.
,
Morison
,
G. K.
, and
Kundur
,
P.
,
2001
, “
Experience With Testing and Modeling of Gas Turbines
,”
IEEE Power Engineering Society Winter Meeting
, Columbus, OH, January 28-February 1, Vol.
2
, pp.
652
656
.10.1109/PESW.2001.916931
11.
Kaikko
,
J.
,
Talonpoika
,
T.
, and
Sarkomma
,
P.
,
2002
, “
Gas Turbine Model for an On-Line Condition Monitoring and Diagnostic System
,”
Proceedings of the Australasian Universities Power Engineering Conference (AUPEC2002)
, Melbourne, Australia, September 29–October 2.
12.
Klang
,
H.
, and
Lindholm
,
A.
,
2005
, “
Modeling and Simulation of a Gas Turbine
,” Ph.D. thesis, Linköping University, Linköping, Sweden.
13.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2006
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simuink
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
506
517
.10.1115/1.2132383
14.
Al-Hamdan
,
Q. Z.
, and
Ebaid
,
M. S. Y.
,
2006
, “
Modeling and Simulation of a Gas Turbine Engine for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
302
311
.10.1115/1.2061287
15.
Zhu
,
Y.
, and
Frey
,
H. C.
,
2007
, “
Simplified Performance Model of Gas Turbine Combined-Cycle Systems
,”
J. Energy Eng.
,
133
(
2
), pp.
82
90
.10.1061/(ASCE)0733-9402(2007)133:2(82)
16.
Mantzaris
,
J.
, and
Vournas
,
C.
,
2007
, “
Modeling and Stability of a Single-Shaft Combined-Cycle Power Plant
,”
Int. J. Thermodyn.
,
10
(
2
), pp.
71
78
.10.5541/ijot.190
17.
Yee
,
S. K.
,
Milanovic
,
J. V.
, and
Hughes
,
F. M.
,
2008
, “
Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies
,”
IEEE Trans. Power Syst.
,
23
(
1
), pp.
108
118
.10.1109/TPWRS.2007.907384
18.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2008
, “
Prediction of Performance and Emissions of a Two-Shaft Gas Turbine From Experimental Data
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2405
2415
.10.1016/j.applthermaleng.2008.01.021
19.
Khosravi-el-Hossani
,
M.
, and
Dorosti
,
Q.
,
2009
, “
Improvement of Gas Turbine Performance Test in Combine-Cycle
,”
World Acad. Sci., Eng. Technol.
,
34
, pp.
383
386
, available at: http://waset.org/publications/13979
20.
Bank Tavakoli
,
M. R.
,
Vahidi
,
B.
, and
Gawlik
,
W.
,
2009
, “
An Educational Guide to Extract the Parameters of Heavy-Duty Gas Turbines Model in Dynamic Studies Based on Operational Data
,”
IEEE Trans. Power Syst.
,
24
(
3
), pp.
1366
1374
.10.1109/TPWRS.2009.2021231
21.
Roldan-Villasana
,
E. J.
,
Vazquez
,
A.
, and
Jimenez-Sanchez
,
V. M.
,
2010
, “
Modeling of the Simplified Systems for a Power Plant Simulator
,”
Fourth UKSim European Symposium on Computer Modeling And Simulation
(
EMS
), Pisa, Italy, November 17–19, pp.
277
282
.10.1109/EMS.2010.52
22.
Yadav
,
N.
,
Khan
,
I. A.
, and
Grover
,
S.
,
2010
, “
Modeling and Analysis of Simple Open-Cycle Gas Turbine Using Graph Networks
,”
Int. J. Electr. Electron. Eng.
,
4
(
8
), pp.
559
567
, available at: http://www.waset.org/journals/ijeee/v4/v4-8-77.pdf
23.
Shalan
,
H. E.
,
Moustafa Hassan
,
M. A.
, and
Bahgat
,
A. B. G.
,
2011
, “
Parameter Estimation and Dynamic Simulation of Gas Turbine Model in Combined-Cycle Power Plants Based on Actual Operational Data
,”
J. Am. Sci.
,
7
(
5
), pp.
303
310
, available at: http://www.jofamericanscience.org/journals/am-sci/am0705/42_5267am0705_303_310.pdf
24.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2001
, “
Analytical and Neural Network Models for Gas Turbine Design and Off-Design Simulation
,”
Int. J. Appl. Thermodyn.
,
4
(
4
), pp.
173
182
, available at: http://ijoticat.com/index.php/IJoT/article/view/78/70
25.
Ogaji
,
S. O. T.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2002
, “
Multiple-Sensor Fault-Diagnosis for a 2-Shaft Stationary Gas Turbine
,”
Appl. Energy
,
71
(
4
), pp.
321
339
.10.1016/S0306-2619(02)00015-6
26.
Arriagada
,
J.
,
Genrup
,
M.
,
Loberg
,
A.
, and
Assadi
,
M.
,
2003
, “
Fault Diagnosis System for an Industrial Gas Turbine by Means of Neural Networks
,”
International Gas Turbine Congress
(IGTC2003Tokyo), Tokyo, Japan, November 2–7, Paper No. TS-001.
27.
Basso
,
M.
,
Giarre
,
L.
,
Groppi
,
S.
, and
Zappa
,
G.
,
2005
, “
NARX Models of an Industrial Power Plant Gas Turbine
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
599
604
.10.1109/TCST.2004.843129
28.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
, and
Burgio
,
M.
,
2004
, “
Set Up of a Robust Neural Network for Gas Turbine Simulation
,”
ASME
Paper No. GT2004-53421.10.1115/GT2004-53421
29.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
, and
Zanetta
,
G. A.
,
2006
, “
Assessment of the Robustness of Gas Turbine Diagnostics Tools Based on Neural Networks
,”
ASME
Paper No. GT2006-90118.10.1115/GT2006-90118
30.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Artificial Intelligence for the Diagnostics of Gas Turbines, Part I: Neural Network Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
711
719
.10.1115/1.2431391
31.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Artificial Intelligence for the Diagnostics of Gas Turbines, Part II: Neuro-Fuzzy Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
720
729
.10.1115/1.2431392
32.
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Gas Turbine Modeling by Using Neural Networks Trained on Field Operating Data
,” 20th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS2007), Padova, Italy, June 25–28.
33.
Simani
,
S.
, and
Patton
,
R. J.
,
2008
, “
Fault Diagnosis of an Industrial Gas Turbine Prototype Using a System Identification Approach
,”
Control Eng. Pract.
,
16
(
7
), pp.
769
786
.10.1016/j.conengprac.2007.08.009
34.
Yoru
,
Y.
,
Karakoc
,
T. H.
, and
Hepbasli
,
A.
,
2009
, “
Application of Artificial Neural Network (ANN) Method to Exergetic Analyses of Gas Turbines
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, August 9–14.
35.
Fast
,
M.
,
Assadi
,
M.
, and
De
,
S.
,
2008
, “
Condition Based Maintenance of Gas Turbines Using Simulation Data and Artificial Neural Network: A Demonstration of Feasibility
,”
ASME
Paper No. GT2008-50768.10.1115/GT2008-50768
36.
Fast
,
M.
,
Assadi
,
M.
, and
De
,
S.
,
2009
, “
Development and Multi-Utility of an ANN Model for an Industrial Gas Turbine
,”
J. Appl. Energy
,
86
(
1
), pp.
9
17
.10.1016/j.apenergy.2008.03.018
37.
Fast
,
M.
,
Palmé
,
T.
, and
Genrup
,
M.
,
2009
, “
A Novel Approach for Gas Turbine Condition Monitoring Combining CUSUM Technique and Artificial Neural Network
,”
ASME
Paper No. GT2009-59402.10.1115/GT2009-59402
38.
Palmé
,
T.
,
Fast
,
M.
, and
Karlsson
,
A.
,
2009
, “
Gas Turbines Sensor Validation Through Classification With Artificial Neural Networks
,”
Appl. Energy
,
88
(
11
), pp.
3898
3904
.10.1016/j.apenergy.2011.03.047
39.
Fast
,
M.
, and
Palmé
,
T.
,
2010
, “
Application of Artificial Neural Network to the Condition Monitoring and Diagnosis of a Combined Heat and Power Plant
,”
Energy
,
35
(
2
), pp.
1114
1120
.10.1016/j.energy.2009.06.005
40.
Fast
,
M.
,
2010
, “
Artificial Neural Networks for Gas Turbine Monitoring
,” Ph.D. thesis, Lund University, Lund, Sweden.
41.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
2nd ed.
,
Pennwell Books
,
Tulsa, OK
.
42.
Morini
,
M.
,
Cataldi
,
G.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
A Model for the Simulation of Large-Size Single-Shaft Gas Turbine Start-Up Based on Operating Data Fitting
,”
ASME
Paper No. GT2007-27373.10.1115/GT2007-27373
43.
Agrawal
,
R. K.
, and
Yunis
,
M.
,
1982
, “
A Generalized Mathematical Model to Estimate Gas Turbine Starting Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
194
201
.10.1115/1.3227249
44.
Balakrishnan
,
S. R.
, and
Santhakumar
,
S.
,
1996
, “
Fuzzy Modeling Considerations in an Aero Gas Turbine Engine Start Cycle
,”
Fuzzy Sets Syst.
,
78
(
1
), pp.
1
4
.10.1016/0165-0114(95)00195-6
45.
Peretto
,
A.
, and
Spina
,
P. R.
,
1997
, “
Comparison of Industrial Gas Turbine Transient Responses Performed by Different Dynamic Models
,” ASME Paper No. 97-GT-177.
46.
Beyene
,
A.
, and
Fredlund
,
T.
,
1998
, “
Comparative Analysis of Gas Turbine Engine Starting
,” ASME Paper No. 98-GT-419.
47.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T.
, and
Ro
,
S. T.
,
2002
, “
Dynamic Simulation of Full Startup Procedure of Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
510
516
.10.1115/1.1473150
48.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T.
, and
Ro
,
S. T.
,
2001
, “
Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
589
594
.10.1115/1.1370973
49.
Kim
,
T. S.
,
Park
,
H. J.
, and
Ro
,
S. T.
,
2001
, “
Characteristics of Transient Operation of a Dual-Pressure Bottoming System for the Combined Cycle Power Plant
,”
Energy
,
26
(
10
), pp.
905
918
.10.1016/S0360-5442(01)00039-1
50.
Shin
,
J. Y.
,
Jeon
,
Y. J.
,
Maeng
,
D. J.
,
Kim
,
J. S.
, and
Ro
,
S. T.
,
2002
, “
Analysis of the Dynamic Characteristics of a Combined-Cycle Power Plant
,”
Energy
,
27
(
12
), pp.
1085
1098
.10.1016/S0360-5442(02)00087-7
51.
Davison
,
C. R.
, and
Birk
,
A. M.
,
2004
, “
Steady State and Transient Modeling of a Micro-Turbine with Comparison to Operating Engine
,”
ASME
Paper No. GT2004-53378.10.1115/GT2004-53378
52.
Huang
,
X. H.
, and
Zheng
,
X. S.
,
2005
, “
Research on Startup Model of Aircraft Engine Based on Stage-Stacking Method
,”
Acta Aeronaut. Astronaut. Sinica
,
26
(
5
), pp.
524
528
, available at: http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKXB200505003.htm
53.
Xunkai
,
W.
, and
Yinghong
,
L.
,
2006
, “
Aero-Engine Dynamic Start Model Based on Parsimonious Genetic Programming
,”
Sixth World Congress on Intelligent Control and Automation
(
WCICA 2006
), Dalian China, June 21–23, Vol.
1
, pp.
1478
1482
.10.1109/WCICA.2006.1712595
54.
Sanaye
,
S.
, and
Rezazadeh
,
M.
,
2007
, “
Transient Thermal Modeling of Heat Recovery Steam Generators in Combined Cycle Power Plants
,”
Int. J. Energy Res.
,
31
(
11
), pp.
1047
1063
.10.1002/er.1297
55.
Corbett
,
M.
,
Lamm
,
P.
,
Owen
,
P.
,
Phillips
,
S. D.
,
Blackwelder
,
M.
,
Alt
,
J. T.
,
McNichols
,
J.
,
Boyd
,
M.
, and
Wolff
,
J. M.
,
2008
, “
Transient Turbine Engine Modeling With Hardware-in-the-Loop Power Extraction
,”
AIAA
Paper No. 2008-5932.10.2514/6.2008-5932
56.
Alobaid
,
F.
,
Postler
,
R.
,
Strohle
,
J.
,
Epple
,
B.
, and
Hyun-Gee
,
K.
,
2008
, “
Modeling and Investigation Start-Up Procedures of a Combined Cycle Power Plant
,”
Appl. Energy
,
85
(
12
), pp.
1173
1189
.10.1016/j.apenergy.2008.03.003
57.
Daneshvar
,
K.
,
Behbahani-nia
,
A.
,
Khazraii
,
Y.
, and
Ghaedi
,
A.
,
2012
, “
Transient Modeling of Single-Pressure Combined Cycle Power Plant Exposed to Load Reduction
,”
Int. J. Model. Optim.
2
(
1
), pp.
64
70
.10.7763/IJMO.2011.V1.87
58.
Sarkar
,
S.
,
Mukherjee
,
K.
,
Sarkar
,
S.
, and
Ray
,
A.
,
2012
, “
Symbolic Transient Time-Series Analysis for Fault Detection in Aircraft Gas Turbine Engines
,”
American Control Conference
(ACC), Montreal, QC, Canada, June 27–29, pp.
5132
5137
.
59.
Rachtan
,
W.
, and
Malinowski
,
L.
,
2013
, “
An Approximate Expression for Part-Load Performance of a Microturbine Combined Heat and Power System Heat Recovery Unit
,”
Energy
,
51
, pp.
146
153
.10.1016/j.energy.2012.12.037
60.
Venturini
,
M.
,
2005
, “
Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models
,”
ASME J. Turbomach.
,
128
(
3
), pp.
444
454
.10.1115/1.2183315
61.
Venturini
,
M.
,
2006
, “
Optimization of a Real-Time Simulator Based on Recurrent Neural Networks for Compressor Transient Behavior Prediction
,”
ASME J. Turbomach.
,
129
(
3
), pp.
468
478
.10.1115/1.2437232
62.
Venturini
,
M.
,
2004
, “
Development and Experimental Validation of a Compressor Dynamic Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
599
608
.10.1115/1.1928935
63.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2006
, “
Development of a One-Dimensional Modular Dynamic Model for the Simulation of Surge in Compression Systems
,”
ASME J. Turbomach.
,
129
(
3
), pp.
437
447
.10.1115/1.2447757
64.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2009
, “
Analysis of Biogas Compression System Dynamics
,”
Appl. Energy
,
86
(
11
), pp.
2466
2475
.10.1016/j.apenergy.2009.03.008
65.
Asgari
,
H.
,
Chen
,
X. Q.
,
Sainudiin
,
R.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2014
, “
Modeling and Simulation of the Startup Operation of a Heavy-Duty Gas Turbine Using NARX Models
,”
ASME
Paper No. GT2014-25056.10.1115/GT2014-25056
66.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2011
,
Neural Network Tool BoxTM User's Guide R2011b
,
The MathWorks, Inc.
,
Torrance, CA
.
You do not currently have access to this content.