Fuel injectors often feature cavitation because of large pressure gradients, which in some regions lead to extremely low pressures. The main objective of this work is to compare the prediction capabilities of two multiphase flow approaches for modeling cavitation in small nozzles, like those used in high-pressure diesel or gasoline fuel injectors. Numerical results are assessed against quantitative high resolution experimental data collected at Argonne National Laboratory using synchrotron X-ray radiography of a model nozzle. One numerical approach uses a homogeneous mixture model with the volume of fluid (VOF) method, in which phase change is modeled via the homogeneous relaxation model (HRM). The second approach is based on the multifluid nonhomogeneous model and uses the Rayleigh bubble-dynamics model to account for cavitation. Both models include three components, i.e., liquid, vapor, and air, and the flow is compressible. Quantitatively, the amount of void predicted by the multifluid model is in good agreement with measurements, while the mixture model overpredicts the values. Qualitatively, void regions look similar and compare well with the experimental measurements. Grid converged results have been achieved for the prediction of mass flow rate while grid-convergence for void fraction is still an open point. Simulation results indicate that most of the vapor is produced at the nozzle entrance. In addition, downstream along the centerline, void due to expansion of noncondensable gases has been identified. The paper also includes a discussion about the effect of turbulent pressure fluctuations on cavitation inception.

References

References
1.
Andriotis
,
A.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Vortex Flow and Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
610
, pp.
195
215
.10.1017/S0022112008002668
2.
Payri
,
F.
,
Bermudez
,
V.
,
Payri
,
R.
, and
Salvador
,
F. J.
,
2004
, “
The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles
,”
Fuel
,
83
, pp.
419
431
.10.1016/j.fuel.2003.09.010
3.
Som
,
S.
,
El-Hannouny
,
E. M.
,
Longman
,
D. E.
, and
Aggarwal
,
S. K.
,
2010
, “
Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
),
p. 042802
.10.1115/1.3203146
4.
Som
,
S.
,
Ramirez
,
A. I.
,
Longman
,
D. E.
, and
Aggarwal
,
S. K.
,
2011
, “
Effect of Nozzle Orifice Geometry on Spray, Combustion, and Emission Characteristics Under Diesel Engine Conditions
,”
Fuel
,
90
, pp.
1267
1276
.10.1016/j.fuel.2010.10.048
5.
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2012
, “
Numerical Analysis of Injector Flow and Spray Characteristics From Diesel Injectors Using Fossil and Biodiesel Fuels
,”
Appl. Energy
,
97
, pp.
656
666
.10.1016/j.apenergy.2011.11.080
6.
Befrui
,
B.
,
Corbinelli
,
G.
,
Hoffmann
,
G.
,
Andrews
,
R. J.
, and
Sankhalpara
,
S. R.
,
2009
Cavitation and Hydraulic Flip in the Outward-Opening GDi Injector Valve-Group
,”
SAE
Technical Paper No. 2009-01-1483.10.4271/2009-01-1483
7.
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2010
, “
Analysis of Transient Cavitating Flows in Diesel Injectors Using Diesel and Biodiesel Fuels
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
879
900
.10.4271/2010-01-2245
8.
Battistoni
,
M.
,
Grimaldi
,
C. N.
, and
Mariani
,
F.
,
2012
, “
Coupled Simulation of Nozzle Flow and Spray Formation Using Diesel and Biodiesel for CI Engine Applications
,”
SAE
Technical Paper No. 2012-01-1267.10.4271/2012-01-1267
9.
Arcoumanis
,
C.
,
Gavaises
,
M.
,
Flora
,
H.
, and
Roth
,
H.
,
2001
, “
Visualisation of Cavitation in Diesel Engine Injectors
,”
Mec. Ind.
,
2
, pp.
375
381
.
10.
Hayashi
,
T.
,
Suzuki
,
M.
, and
Ikemoto
,
M.
,
2012
, “
Visualization of Internal Flow and Spray Formation With Real Size Diesel Nozzle
,”
12th Triennial International Conference on Liquid Atomization and Spray Systems
, ICLASS 2012, Heidelberg, Germany, September 2–6, Contribution No. 1375.
11.
Payri
,
R.
,
Salvador
,
F. J.
,
Gimeno
,
J.
, and
Venegas
,
O.
,
2013
, “
Study of Cavitation Phenomenon Using Different Fuels in a Transparent Nozzle by Hydraulic Characterization and Visualization
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
235
244
.10.1016/j.expthermflusci.2012.06.013
12.
Duke
,
D.
,
Kastengren
,
A.
,
Tilocco
,
F. Z.
, and
Powell
,
C.
,
2013
, “
Synchrotron X-Ray Measurements of Cavitation
,”
25th Annual Conference on Liquid Atomization and Spray Systems
, ILASS-Americas, Pittsburgh, PA, May 5–8, Paper No. 8.
13.
Bauer
,
D.
,
Chaves
,
H.
, and
Arcoumanis
,
C.
,
2012
, “
Measurements of Void Fraction Distribution in Cavitating Pipe Flow Using X-Ray CT
,”
Meas. Sci. Technol.
,
23
,
055302
.10.1088/0957-0233/23/5/055302
14.
Kastengren
,
A. L.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
,
Manin
,
J.
,
Pickett
,
L. M.
,
Payri
,
R.
, and
Bazyn
,
T.
,
2012
, “
Engine Combustion Network (ECN): Measurements of Nozzle Geometry and Hydraulic Behavior
,”
Atom. Sprays
,
22
(
12
), pp.
1011
1052
.10.1615/AtomizSpr.2013006309
15.
Kastengren
,
A.
,
Powell
,
C. F.
,
Liu
,
Z.
,
Fezzaa
,
K.
, and
Wang
,
J.
,
2009
, “
High-Speed X-Ray Imaging of Diesel Injector Needle Motion
,”
ASME
Internal Combustion Engine Division Spring Technical Conference
, Milwaukee, WI, May 3–6, ASME Paper No. ICES2009-76032.10.1115/ICES2009-76032
16.
Schmidt
,
D. P.
, and
Corradini
,
M. L.
,
2001
, “
The Internal Flow of Diesel Fuel Injector Nozzles: A Review
,”
Int. J. Eng. Res.
,
2
(
1
), pp.
1
22
.10.1243/1468087011545316
17.
Giannadakis
,
E.
,
2005
, “
Modelling of Cavitation in Automotive Fuel Injector Nozzles
,” Ph.D. thesis, Imperial College, London.
18.
Marcer
,
R.
,
Le Cottier
,
P.
,
Chaves
,
H.
,
Argueyrolles
,
B.
,
Habchi
,
C.
, and
Barbeau
,
H.
,
2000
, “
A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method
,”
SAE
Technical Paper No. 2000-01-2932.10.4271/2000-01-2932
19.
Alajbegovic
,
A.
,
1999
, “
Three-Dimensional Cavitation Calculations in Nozzles
,”
Second Annual Meeting of the Institute for Multifluid Science and Technology
, Santa Barbara, CA, March 14–18, pp.
97
103
.
20.
Von Berg
,
E.
,
Alajbegovic
,
A.
,
Tatschl
,
R.
,
Krüger
,
C.
, and
Michels
,
U.
,
2001
, “
Multiphase Modeling of Diesel Sprays With the Eulerian/Eulerian Approach
,” ILASS-Europe, Zurich, Switzerland, September 2–6.
21.
Giannadakis
,
E.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Modeling of Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
616
, pp.
153
193
.10.1017/S0022112008003777
22.
Giannadakis
,
E.
,
Papoulias
,
D.
,
Gavaises
,
M.
,
Arcoumanis
,
C.
,
Soteriou
,
C.
, and
Tang
,
W.
,
2007
, “
Evaluation of the Predictive Capability of Diesel Nozzle Cavitation Models
,”
SAE
Technical Paper No. 2007-01-0245.10.4271/2007-01-0245
23.
Schmidt
,
D. P.
,
Gopalakrishnan
,
S.
, and
Jasak
,
H.
,
2010
, “
Multi-Dimensional Simulation of Thermal Non-Equilibrium Channel Flow
,”
Int. J. Multiphase Flow
,
36
, pp.
284
292
.10.1016/j.ijmultiphaseflow.2009.11.012
24.
Avva
,
R. K.
,
Singhal
,
A.
, and
Gibson
,
D. H.
,
1995
, “
An Enthalpy Based Model of Cavitation
,”
Proceedings of the ASME/JSME Fluids Engineering and Laser Anemometry Conference
, Hilton Head, SC, August 13–18, Vol.
226
, pp.
63
70
.
25.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
26.
Winklhofer
,
E.
,
Kull
,
E.
,
Kelz
,
E.
, and
Morozov
,
A.
,
2001
, “
Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions
,”
ILASS-Europe
, Zurich, Switzerland, September 2–6.
27.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
,
CONVERGE 2.1.0 Theory Manual,
Convergent Science, Inc., Middleton, WI.
28.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE
Technical Paper No. 2007-01-0159.10.4271/2007-01-0159
29.
Zhao
,
H.
,
Quan
,
S.
,
Dai
,
M.
,
Pomraning
,
E.
,
Senecal
,
E.
,
Xue
,
Q.
,
Battistoni
,
M.
, and
Som
,
S.
,
2013
, “
Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects
,”
ASME 2013 Internal Combustion Engine Division Fall Technical Conference
, Dearborn, MI, October 13–16, ASME Paper No. ICEF2013-19167.
30.
Bilicki
,
Z.
, and
Kestin
,
J.
,
1990
, “
Physical Aspects of the Relaxation Model in Two-Phase Flow
,”
Proc. R. Soc. London, Ser. A.
,
428
, pp.
379
397
.10.1098/rspa.1990.0040
31.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Ann. Rev. Fluid Mech.
,
9
, pp.
145
185
.10.1146/annurev.fl.09.010177.001045
32.
Downar-Zapolski
,
P.
,
Bilicki
,
Z.
,
Bolle
,
L.
, and
Franco
,
J.
,
1996
, “
The Non-Equilibrium Relaxation Model for One-Dimensional Flashing Liquid Flow
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
473
483
.10.1016/0301-9322(95)00078-X
33.
Drew
,
D. A.
, and
Passman
,
S. L.
,
1999
,
Theory of Multicomponent Fluids
,
Springer-Verlag
,
New York
.
34.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
,
1995
, “
Foundation of the Interfacial Area Transport Equation and Its Closure Relations
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
481
493
.10.1016/0017-9310(94)00183-V
35.
Ishii
,
M.
,
Sun
,
X.
, and
Kim
,
S.
,
2003
, “
Modeling Strategy of the Source and Sink Terms in the Two-Group Interfacial Area Transport Equation
,”
Ann. Nucl. Energy
,
30
(
13
), pp.
1309
1331
.10.1016/S0306-4549(03)00075-6
36.
Wang
,
D. M.
, and
Greif
,
D.
,
2006
, “
Progress in Modeling Injector Cavitating Flows With a Multi-Fluid Method
,”
ASME
Paper No. FEDSM2006-98501.10.1115/FEDSM2006-98501
37.
Avl List GmbH
,
2011
AVL Fire v. 2011—Eulerian Multiphase
,” Graz, Austria.
38.
Lord Rayleigh
,
1917
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
34
, pp.
94
98
.10.1080/14786440808635681
39.
Plesset
,
M. S.
,
1949
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
, pp.
277
282
.
40.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
41.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.10.1016/0301-9322(75)90030-0
42.
Perry
,
R. H.
, and
Green
,
D. W.
,
1997
,
Perry’s Chemicals Engineers’ Handbook
,
7th ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.