The internal flow characteristics inside lobed mixer-ejector with curved mixing duct and the parametric effects on the lobed mixer-ejector performance are investigated numerically and validated by experimental test. The curved mixing duct affects the development of the streamwise vortices induced by the lobed mixer. When the mixing process undergoes the transition from the straight section to the bent section, the flow inside the curved mixing duct is dominated by the impinging and centrifugal effects. In general, the pumping ratio is decreased approximately 20%–30% once the bent section is mounted on the straight duct. The mixer-ejector performance could by improved by increasing the straight section length, due to more fully momentum utilization of primary jet and weaker influence of bent section on the back pressure near nozzle exit. The mixer-ejector pumping capacity is also augmented with the increase of mixing duct area ratio until the area ratio is reached to 3.5. And the fully-utilization of primary jet momentum inside mixing duct with big area ratio needs long mixing distance. The pumping ratio is decreased as the increase of bent angle of curved mixing duct in approximately linear relationship. When the bent angle exceeds 45 deg, the thermal mixing efficiency is decreased rapidly as the increase of bent angle.

References

References
1.
Paterson
,
J.
,
1999
, “
Overview of Low Observable Technology and Its Effects on Combat Aircraft Survivability
,”
J. Aircraft
,
36
, pp.
380
388
.10.2514/2.2468
2.
Rao
,
G. A.
, and
Mahulikar
,
S. P.
,
2005
, “
New Criterion for Aircraft Susceptibility to Infrared Guided Missiles
,”
Aerospace Sci. Tech.
,
9
, pp.
701
712
.10.1016/j.ast.2005.07.005
3.
Francois
,
T.
,
1998
, “
Internal Aerodynamics of Infrared Suppressors for Helicopter Engines
,”
J. Am. Helicopter Soc.
,
33
, pp.
4
14
.
4.
Mahulikar
,
S. P.
,
Prasad
,
H. S. S.
, and
Potnuru
,
S. K.
,
2008
, “
Infrared Signature Suppression of Helicopter Engine Duct Based on ‘Conceal and Camouflage
,’”
J. Propul. Power
,
24
(3), pp.
613
618
.10.2514/1.28636
5.
Presz
,
W. M.
,
Blinn
,
R. F.
, and
Morin
,
B. L.
,
1987
, “
Short Efficient Ejector Systems
,”
AIAA
Paper No. 87-1837. 10.2514/6.1987-1837
6.
Presz
,
W. M.
,
Morin
,
B. L.
, and
Gousy
,
R. G.
,
1998
, “
Forced Mixer Lobes in Ejector Designs
,”
J. Propul. Power
,
4
, pp.
350
355
.10.2514/3.23073
7.
Shumpert
,
P. K.
,
1980
, “
An Experimental Model Investigation of Turbofan Engine Internal Exhaust Gas Mixer Configurations
,”
AIAA
Paper No. 80-0228. 10.2514/6.1980-228
8.
Sokhey
,
J. S.
, and
Box
,
P. O.
,
1982
, “
Experimental Performance Evaluation of Ventilated Mixers—A New Mixer Concept for High Bypass Turbofan Engine
,”
AIAA
Paper No. 82-0914. 10.2514/6.1982-914
9.
Paterson
,
R. W.
,
1984
, “
Turbofan Mixer Nozzle Flow Field—A Benchmark Experimental Study
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
692
698
.10.1115/1.3239625
10.
Povinelli
,
L. A.
, and
Anderson
,
B. H.
,
1984
, “
Investigation of Mixing in a Turbofan Exhaust Duct
,”
AIAA J.
,
22
, pp.
518
525
.10.2514/3.8433
11.
Eckerle
,
J. K.
,
Sheibani
,
H.
, and
Awad
,
J.
,
1992
, “
Experimental Measurement of the Vortex Development Downstream of a Lobed Forced Mixer
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
63
71
.10.1115/1.2906308
12.
McCormick
,
D. C.
, and
Bennett
,
J. C.
,
1994
, “
Vortical and Turbulent Structure of a Lobed Mixer Free Shear Layer
,”
AIAA J.
,
32
, pp.
1852
1859
.10.2514/3.12183
13.
Tsui
,
Y. Y.
, and
Wu
,
P. W.
,
1996
, “
Investigation of the Mixing Flow Structure in Multilobe Mixers
,”
AIAA J.
,
14
, pp.
1386
1391
.10.2514/3.13244
14.
Glauser
,
M.
,
Ukeiley
,
L.
, and
Wick
,
D.
,
1996
, “
Investigation of Turbulent Flows Via Pseudo Flow Visualization, Part 2—The Lobed Mixer Flow Field
,”
Exp. Therm. Fluid Sci.
,
13
, pp.
167
177
.10.1016/0894-1777(96)00040-4
15.
Yu
,
S. C. M.
, and
Yip
,
T. H.
,
1997
, “
Experimental Investigation of Two-Stream Mixing Flows With Streamwise and Normal Vorticity
,”
Int. J. Heat Fluid Flow
,
18
, pp.
253
261
.10.1016/S0142-727X(96)00093-8
16.
Hu
,
H.
,
Saga
,
T.
,
Kobayashi
,
T.
, and
Taniguchi
,
N.
,
2001
, “
A Study on a Lobed Jet Mixing Flow by Using Stereoscopic Particle Image Velocimetry Technique
,”
Phys. Fluids
,
13
, pp.
3425
3441
.10.1063/1.1409537
17.
Kuchar
,
A. P.
, and
Chamberlin
,
R.
,
1980
, “
Scale Model Performance Test Investigation of Exhaust System Mixers for an Energy Efficient Engine (E3) Propulsion System
,”
AIAA
Paper No. 80-0299. 10.2514/6.1980-299
18.
Kozlowski
,
K.
, and
Kraft
,
G.
,
1980
, “
Experimental Evaluation of Exhaust Mixers for an Energy Efficient Engine
,”
AIAA
Paper No. 80-1088. 10.2514/6.1980-1088
19.
Kuchar
,
A. P.
, and
Chamberlin
,
R.
,
1983
, “
Scale Model Performance Test Investigation of Mixed Flow Exhaust System Mixers for an Energy Efficient Engine (E3) Propulsion System
,”
AIAA
Paper No. 83-0541. 10.2514/6.1983-541
20.
Abolfadl
,
M. A.
, and
Sehra
,
A. K.
,
1993
, “
Experimental Investigation of Exhaust System Mixers for a High Bypass Turbofan Engine
,”
AIAA
Paper No. 93-0022. 10.2514/6.1993-22
21.
Skebe
,
S. A.
,
Paterson
,
R. W.
, and
Barber
,
T. J.
,
1988
, “
Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Fields
,”
AIAA
Paper No. 88-3785-CP.10.2514/6.1988-3785
22.
Yu
,
S. C. M.
,
Yeo
,
J. H.
, and
Teh
,
J. K. L.
,
1993
, “
Some Measurements Downstream of a Lobed Forced Mixer With Different Trailing Edge Configurations
,”
Int. Commun. Heat Mass Transfer
,
20
, pp.
721
728
.10.1016/0735-1933(93)90083-8
23.
Mao
,
R.
,
Yu
,
S. C. M.
,
Zhou
,
T.
, and
Chua
,
L. P.
,
2009
, “
On the Vorticity Characteristics of Lobe-Forced Mixer at Different Configurations
,”
Exp. Fluids
,
46
, pp.
1049
1066
.10.1007/s00348-009-0613-x
24.
Salman
,
H.
,
McGuirk
,
J. J.
, and
Page
,
G. J.
,
2006
, “
Prediction of a Non-Isothermal Three-Dimensional Mixing Layer Created by a Scarfed Lobed Mixer
,”
Proc. IMechE Part G: J. Aerosp. Eng.
,
220
, pp.
399
419
.10.1243/09544100JAERO66
25.
Nastase
, I
.
, and
Meslem
,
A.
,
2010
, “
Vortex Dynamics and Mass Entrainment in Turbulent Lobed Jets With and Without Lobe Deflection Angles
,”
Exp. Fluids
,
48
, pp.
693
714
.10.1007/s00348-009-0762-y
26.
Lei
,
Z. J.
,
Mahallati
,
A.
,
Cunningham
,
M.
, and
Germain
,
P.
,
2012
, “
Effects of Core Flow Swirl on the Flow Characteristics of a Scalloped Forced Mixer
,”
ASME J. Eng. Gas Turbines Power
,
134
(11), p.
111201
.10.1115/1.4005968
27.
Presz
,
W. M.
,
1991
, “
Mixer/Ejector Noise Suppressors
,”
AIAA
Paper No. 91-2243. 10.2514/6.1991-2243
28.
Presz
,
W. M.
,
Reynolds
,
G.
, and
McCormick
,
D. C.
,
1994
, “
Thrust Augment Using Mixer-Ejector-Diffuser Systems
,”
AIAA
Paper No. 94-0020. 10.2514/6.1994-20
29.
Skebe
,
S.
,
McCormick
,
D.
, and
Presz
,
W. M.
,
1988
, “
Parameter Effects on Mixer-Ejector Pumping Performance
,”
AIAA
Paper No. 88-7018. 10.2514/6.1988-7018
30.
Zhang
,
J. Z.
,
Shan
,
Y.
, and
Li
,
L. G.
,
2005
, “
Computation and Validation of Parameter Effects on Lobed Mixer-Ejector Performances
,”
Chin. J. Aeronaut.
,
18
, pp.
193
198
.10.1016/S1000-9361(11)60297-5
31.
Liu
,
Y. H.
,
2007
, “
Experimental and Numerical Research on High Pumping Performance Mechanism of Lobed Exhauster-Ejector Mixer
,”
Int. Comm. Heat Mass Transfer
,
34
, pp.
197
209
.10.1016/j.icheatmasstransfer.2006.10.003
32.
Liu
,
Y. H.
,
2002
, “
Experimental and Numerical Investigation of Circularly Lobed Nozzle With/Without Central Plug
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2577
2585
.10.1016/S0017-9310(01)00339-8
33.
Raman
,
G.
, and
Taghavi
,
R.
,
1997
, “
Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle
,”
J. Sound Vib.
,
207
, pp.
227
247
.10.1006/jsvi.1997.1100
34.
DalBello
,
T.
, and
Steffen
,
C. J.
,
2002
, “
Parametric Study of a Mixer/Ejector Nozzle With Mixing Enhancement Devices
,”
AIAA
Paper No. 2002-0667. 10.2514/6.2002-667
35.
Presz
,
W. M.
, and
Werle
,
M.
,
2002
, “
Multi-Stage Mixer/Ejector Systems
,”
AIAA
Paper No. 2002-4064. 10.2514/6.2002-4064
36.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigations of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
, pp.
36
45
.10.1016/j.applthermaleng.2005.04.011
37.
Thirumurthy
,
D.
,
Blaisdell
,
G. A.
,
Lyrintzis
,
A. S.
, and
Sullivan
,
J. P.
,
2011
, “
Preliminary Design and Computational Analysis of an Ejector Nozzle With Chevrons
,”
AIAA
Paper No. 2011-918. 10.2514/6.2011-918
38.
Hendricks
,
E. S.
, and
Seide
,
J. A.
,
2012
, “
A Multidisciplinary Approach to Mixer-Ejector Analysis and Design
,”
AIAA
Paper No. 2012-4224. 10.2514/6.2012-4224
39.
Zhang
,
J. Z.
,
Li
,
L. G.
, and
Gao
,
C.
,
1997
, “
An Experimental Study on a Lobed Nozzle of an Infrared Suppression System
,”
J. Aerosp. Power
,
12
(2), pp.
212
214
.
40.
Zhang
,
J. Z.
,
Li
,
L. G.
, and
Gao
,
C.
,
2005
, “
Model Experiments of Infrared Suppressor for Helicopter Exhaust System
,”
Int. J. Infrared Millimeter Waves
,
24
, pp.
125
129
.
41.
Zhang
,
J. Z.
,
Shan
,
Y.
, and
Li
,
L. G.
,
2007
, “
Investigation on Lobed Nozzle Mixer-Ejector Infrared Suppressor for Helicopter Exhaust System
,”
Acta Aeronaut. Et Astronaut. Sinica
,
28
, pp.
32
36
.
42.
Pan
,
C. X.
,
Zhang
,
J. Z.
, and
Shan
,
Y.
,
2013
, “
Effects of Exhaust Temperature on Helicopter Infrared Signature
,”
Appl. Therm. Eng.
,
51
, pp.
529
538
.10.1016/j.applthermaleng.2012.09.016
43.
Maqsood
,
A.
, and
Birk
,
A. M.
,
2008
, “
Improving the Performance of a Bent Ejector With Inlet Swirl
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
061201
.10.1115/1.2943196
You do not currently have access to this content.