In order to design a spraying system with the desired characteristics, the atomization process has to be understood in detail, including the primary breakup of the liquid core. Accurate prediction of primary breakup is a major barrier to computer-based analysis of spray combustion. The development of models is hindered by the lack of validation data in a region where the fluid is dense, and optical access is therefore limited. The present experimental study is aimed at probing the spray structure by means of X-ray computed tomography (CT). A full-cone atomizer (0.79 mm orifice diameter) spraying in air at ambient pressure is investigated as a proof of concept. A mixture of water and iodine is used as the working fluid, providing elevated X-ray absorption and therefore, improved signal-to-noise ratio. Several hundreds of X-ray projections are acquired as the spraying atomizer is rotated in front of the detector. Standard software for medical imaging is used to reconstruct the three-dimensional time-averaged distribution of liquid mass fraction in the full field of view, from the intact liquid core to the dilute spray region. A spatial resolution of 0.6 mm is obtained along the spraying direction, while the resolution is 0.3 mm in the other two directions. Significant asymmetries in the structure of the spray are revealed.

References

References
1.
Lin
,
S. P.
, and
Reitz
,
R. D.
,
1998
, “
Drop and Spray Formation From a Liquid Jet
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
85
105
.10.1146/annurev.fluid.30.1.85
2.
Linne
,
M.
,
2012
, “
Analysis of X-Ray Radiography in Atomizing Sprays
,”
Exp. Fluids
,
53
, pp.
655
671
.10.1007/s00348-012-1312-6
3.
Bachalo
,
W. D.
,
2000
, “
Spray Diagnostics for the Twenty-First Century
,”
Atomization Sprays
,
10
, pp.
439
474
.
4.
Field
,
J. E.
, and
Lesser
,
M. B.
,
1977
, “
On the Mechanics of High Speed Liquid Jets
,”
Proc. R. Soc. London, Ser. A
,
357
, pp.
143
162
.10.1098/rspa.1977.0160
5.
Yule
,
A. J.
, and
Watkins
,
A. P.
,
1991
, “
Measurement and Modeling of Diesel Sprays
,”
Atomization Sprays
,
1
, pp.
441
465
.
6.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Ann. Rev. Fluid Mech.
,
23
, pp.
261
304
.10.1146/annurev.fl.23.010191.001401
7.
Beeck
,
M. A.
, and
Hentschel
,
W.
,
2000
, “
Laser Metrology—A Diagnostic Tool in Automotive Development Processes
,”
Opt. Lasers Eng.
,
34
, pp.
101
120
.10.1016/S0143-8166(00)00077-4
8.
Zhang
,
Y.-Y.
,
Yoshizaki
,
T.
, and
Nishida
,
K.
,
2000
, “
Imaging of Droplets and Vapor Distributions in a Diesel Fuel Spray by Means of a Laser Absorption-Scattering Technique
,”
Appl. Opt.
,
39
, pp.
6221
6229
.10.1364/AO.39.006221
9.
Lee
,
C. S.
,
Lee
,
K. H.
,
Chon
,
M. S.
, and
Kim
,
D. S.
,
2001
, “
Spray Structure and Characteristics of High-Pressure Gasoline Injectors for Direct-Injection Engine Applications
,”
Atomization Sprays
,
11
, pp.
35
48
.
10.
Ullom
,
M. J.
, and
Sojka
,
P. E.
,
2001
, “
A Simple Optical Patternator for Evaluating Spray Symmetry
,”
Rev. Sci. Instrum.
,
72
, pp.
2472
2477
.10.1063/1.1353196
11.
MacPhee
,
A. G.
,
Tate
,
M. W.
,
Powell
,
C. F.
,
Yue
,
Y.
,
Renzi
,
M. J.
,
Ercan
,
A.
,
Narayanan
,
S.
,
Fontes
,
E.
,
Walther
,
J.
,
Schaller
,
J.
,
Gruner
,
S. M.
, and
Wang
,
J.
,
2002
, “
X-Ray Imaging of Shock Waves Generated by High Pressure Fuel Sprays
,”
Science
,
295
, pp.
1261
1263
.10.1126/science.1068149
12.
Cai
,
W.
,
Powell
,
C. F.
,
Yue
,
Y.
,
Narayanan
,
S.
,
Wang
,
J.
, and
Tate
,
M. W.
,
2003
, “
Quantitative Analysis of Highly Transient Fuel Sprays by Time-Resolved X-Radiography
,”
Appl. Phys. Lett.
,
83
, pp.
1671
1673
.10.1063/1.1604161
13.
EL-Hannouny
E. M.
,
Gupta
,
S.
,
Powell
,
C. F.
,
Cheong
,
S.-K.
,
Liu
,
J.
,
Wang
,
J.
, and
Sekar
,
R. R.
,
2003
, “
Near-Nozzle Spray Characteristics of Heavy-Duty Diesel Injectors
,”
SAE
Paper No. 2003-01-3150.10.4271/2003-01-3150
14.
Renzi
,
M. J.
,
Tate
,
M. W.
,
Ercan
,
A.
,
Gruner
,
S. M.
,
Fontes
,
E.
, and
Powell
,
C. F.
,
2002
, “
Pixel Array Detectors for Time Resolved Radiography
,”
Rev. Sci. Instrum.
,
773
, pp.
1621
1624
.10.1063/1.1435816
15.
Tanner
,
F. X.
,
Feigl
,
K. A.
,
Ciatti
,
S. A.
,
Powell
,
C. F.
,
Cheong
S.-K.
,
Liu
,
J.
, and
Wang
,
J.
,
2006
, “
Structure of High-Velocity Dense Sprays in the Near-Nozzle Region
,”
Atomization Sprays
,
16
, pp.
579
597
.10.1615/AtomizSpr.v16.i5.70
16.
Kastengren
,
A. L.
,
Powell
,
C. F.
,
Cheong
,
S.-K.
,
Wang
,
Y.
,
Im
,
K.-S.
,
Liu
,
X.
,
Wang
,
J.
, and
Riedel
,
T.
,
2007
, “
Determination of Diesel Spray Axial Velocity Using X-Ray Radiography
,”
SAE
Paper No. 2007-01-0666.10.4271/2007-01-0666
17.
Kastengren
,
A. L.
,
Powell
,
C. F.
,
Im
,
K.-S.
,
Wang
,
Y.-J.
, and
Wang
,
J.
,
2009
, “
Measurement of Biodiesel Blend and Conventional Diesel Spray Structure Using X-Ray Radiography
,”
ASME J. Eng. Gas Turbines Power
,
131
(6), p. 062802.10.1115/1.3094023
18.
Kastengren
,
A. L.
,
Powell
,
C. F.
,
Liu
,
Z.
, and
Wang
J.
,
2009
, “
Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured With X-Ray Radiography
,”
SAE
Paper No. 2009-01-0840.10.4271/2009-01-0840
19.
Kastengren
,
A.
,
Powell
,
C. F.
,
Fezzaa
,
K.
,
Liu
,
Z.
,
Moon
,
S.
,
Zhang
X.
,
Gao
,
J.
, and
Tilocco
,
F.
,
2011
, “
Correlation of Split-Injection Needle Lift and Spray Structure,”
SAE
Technical Paper 2011-01-038310.4271/2011-01-0383.
20.
Wang
,
J.,
2005
, “X-Ray Vision of Fuel Sprays,”
J. Synch. Rad.
,
12
, pp.
197
207
.
21.
Balewski
,
B.
,
Heine
,
B.
, and
Tropea
,
C.
,
2010
, “
Experimental Investigation of the Correlation Between Nozzle Flow and Spray Using Laser-Doppler Velocimeter, Phase Doppler System, High-Speed Photography, and X-Ray Radiography
,”
Atom. Sprays
,
20
, pp.
57
70
.10.1615/AtomizSpr.v20.i1.50
22.
Smallwood
,
G. J.
, and
Gülder,
Ö. L.
,
2000
, “
Views on the Structure of Transient Diesel Sprays
,”
Atom. Sprays
,
10
(3-5), pp.
355
386
.
23.
Massot,
M.
,
2007
, “
Eulerian Multi-Fluid Models for Polydisperse Evaporating Sprays
,”
Multiphase Reacting Flows: Modelling and Simulations
, D. L. Marchisio and R. O. Fox, eds., Springer, Wien, Germany.
24.
Gorokhovski,
M.
, and
Herrmann,
M.,
2008
, “Primary Atomizing Modeling,”
Annu. Rev. Fluid Mech.
,
40
, pp.
343
366
.10.1146/annurev.fluid.40.111406.102200
25.
Williams
,
F. A.
,
1965
, Combustion Theory, Addison-Wesley, Boston, MA.
26.
Kak,
A.
, and
Slaney,
M.,
1988, Principles of Computed Tomographic Imaging, IEEE Press, New York.
27.
Hsieh,
J.
,
2009
, Computed Tomography, John Wiley & Sons, Hoboken, NJ.
You do not currently have access to this content.