Lean premixed combustion is widely used in power generation due to low nitric oxide emissions. Recent interest in syngas requires a better understanding of the role of hydrogen addition on the combustion process. In the present study, the extinction process of hydrogen enriched premixed flames near lean blow out (LBO) in a swirl-stabilized combustor has been examined in both unconfined and confined configurations. High speed images of the flame chemiluminescence are recorded, and a proper orthogonal decomposition (POD) procedure is used to extract the dominant flame dynamics during the LBO process. By examining the POD modes, the spectral information and the statistical properties of POD coefficients, the effect of hydrogen addition on the LBO processes are analyzed and described in the paper. Results show that in unconfined flames, the shear layer mode along with flame rotation with local quenching and reignition is dominant in the methane-only case. For the open hydrogen enriched flames, the extinction times are longer and are linked to the lower minimum ignition energy for hydrogen that facilitates reignition events. In confined methane flames, a conical flame is observed and the POD mode representing the burning in the central recirculation zone appears to be dominant. For the 60% hydrogen enriched flame, a columnar burning pattern is observed and the fluctuation energies are evenly spread across several POD modes making this structure more prone to external disturbances and shorter extinction times.

References

1.
Nair
,
S.
,
2006
, “
Acoustic Characterization of Flame Blowout Phenomenon
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
2.
Bender
,
W. R.
, 2006, “
Lean Premixed Combustion
,” U.S. Department of Energy, http://www.netl.doe.gov
3.
Chao
,
Y. C.
,
Chang
,
Y. L.
,
Wu
,
C. Y.
, and
Cheng
,
T. S.
,
2000
, “
An Experimental Investigation of the Blowout Process of a Jet Flame
,”
Proc. Combust. Inst.
,
28
, pp.
335
342
.10.1016/S0082-0784(00)80228-3
4.
Nicholson
,
H.
, and
Field
,
J.
,
1951
, “
Some Experimental Techniques for the Investigation of Mechanism of Flame Stabilization in the Wakes of Bluff Bodies
,”
Proc. Combust. Inst.
,
3
, pp.
44
68
.
5.
De Zilwa
,
S. R. N.
,
Uhm
,
J. H.
, and
Whitelaw
,
J. H.
,
2000
, “
Combustion Oscillations Close to the Lean Flammability Limit
,”
Combust. Sci. Technol.
,
160
, pp.
231
258
.10.1080/00102200008935804
6.
Li
,
H.
,
Zhou
,
X.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2007
, “
Active Control of Lean Blowout in a Swirl-Stabilized Combustor Using a Tunable Diode Laser
,”
Proc. Combust. Inst.
,
31
, pp.
3215
3223
.10.1016/j.proci.2006.07.006
7.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
, pp.
790
802
.10.1016/j.combustflame.2009.10.020
8.
Nair
,
S.
, and
Lieuwen
,
T.
,
2007
, “
Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame
,”
J. Propul. Power
,
21
(
1
), pp.
32
39
.10.2514/1.5658
9.
Smith
,
C.
,
Nickolaus
,
D.
,
Leach
,
T.
,
Kiel
,
B.
, and
Garwick
,
K.
,
2007
, “
LES Blowout Analysis of Premixed Flow Past V-Gutter Flameholder
,”
45th AIAA Aerospace Sciences, Meeting and Exhibit
, Reno, NV, January 8–11,
AIAA
Paper No. 2007-170.10.2514/6.2007-170
10.
Longwell
,
J. P.
,
1953
, “
Flame Stabilization by Bluff Bodies and Turbulent Flames in Ducts
,”
Proc. Combust. Inst.
,
4
, pp.
90
97
.
11.
Williams
,
F. A.
,
1966
, “
Flame Stabilization of Premixed Turbulent Gases
,”
Applied Mechanics Surveys
,
H. N.
Abramson
,
H.
Liebowitz
,
J. M.
Crowley
, and
S.
Juhasz
, eds., Spartan Books, Washington, DC, pp.
1157
1170
.
12.
Williams
,
G. C.
,
Hottel
,
H. C.
, and
Scurlock
,
A. C.
,
1949
, “
Flame Stabilization and Propagation in High Velocity Gas Streams
,”
Proc. Combust. Inst.
,
3
, pp.
21
40
.
13.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
,
1980
, “
On Flame Stabilization by Bluff-Bodies
,”
ASME J. Eng. Power
,
102
, pp.
209
214
.10.1115/1.3230225
14.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
,
1977
, “
Theoretical Analysis on Flame Stabilization by a Bluff-Body
,”
Combust. Sci. Technol.
,
17
, pp.
153
162
.10.1080/00102207708946825
15.
Zukoski
,
E. E.
,
1954
, “
Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
16.
Spalding
,
D. B.
,
1953
, “
Theoretical Aspects of Flame Stabilization
,”
Aircr. Eng.
,
25
, pp.
264
276
.
17.
Zukoski
,
E. E.
,
1997
, “
Afterburners
,”
Aero-Thermodynamics of Gas Turbine and Rocket Propulsion
,
G. C.
Oates
, ed.,
AIAA
,
Reston, VA
.
18.
Yamaguchi
,
S.
,
Ohiwa
,
N.
, and
Hasegawa
,
T.
,
1985
, “
Structure and Blow-Off Mechanism of Rod-Stabilized Premixed Flame
,”
Combust. Flame
,
62
, pp.
31
41
.10.1016/0010-2180(85)90091-4
19.
Pan
,
J. C.
,
Vangsness
,
M. D.
, and
Ballal
,
D. R.
,
1992
, “
Aerodynamics of Bluff-Body Stabilized Confined Turbulent Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
783
789
.10.1115/1.2906657
20.
Füri
,
M.
,
Papas
,
P.
, and
Monkewitz
,
P. A.
,
2000
, “
Non-Premixed Jet Flame Pulsations Near Extinction
,”
Proc. Combust. Inst.
,
28
, pp.
831
838
.10.1016/S0082-0784(00)80287-8
21.
Christiansen
,
E. W.
,
Law
,
C. K.
, and
Sung
,
C. J.
,
2000
, “
The Role of Pulsating Instability and Global Lewis Number on the Flammability Limit of Lean Heptane/Air Flames
,”
Proc. Combust. Inst.
29
, pp.
807
814
.10.1016/S0082-0784(00)80284-2
22.
Shanbhogue
,
S.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
, pp.
98
120
.10.1016/j.pecs.2008.07.003
23.
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2004
, “
Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane–Air Flames
,”
Combust. Flame
,
138
, pp.
242
258
.10.1016/j.combustflame.2004.04.010
24.
Choundhuri
,
A. R.
, and
Gollahalli
,
S. R.
,
2003
, “
Characteristics of Hydrogen–Hydrocarbon Composite Fuel Turbulent Jet Flame
,”
Int. J. Hydrogen Energy
,
28
, pp.
445
454
.10.1016/S0360-3199(02)00063-0
25.
Day
,
M. S.
,
Bell
,
J. B.
,
Cheng
,
R. K.
,
Tachibana
,
S.
,
Beckner
,
V. E.
, and
Lijewski
,
M. J.
,
2009
, “
Cellular Burning in Lean Premixed Turbulent Hydrogen Air Flames: Coupling Experimental and Computational Analysis at the Laboratory Scale
,”
J. Phys.: Conf. Ser.
,
180
, p.
012031
.
26.
Birbaud
,
A. L.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
,
2007
, “
Dynamics of Confined Premixed Flames Submitted to Upstream Acoustic Modulations
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1257
1265
.10.1016/j.proci.2006.07.122
27.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2005
, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
,
30
, pp.
1717
1724
.10.1016/j.proci.2004.08.067
28.
Kulsheimer
,
C.
, and
Buchner
,
H.
,
2002
, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Combust. Flame
,
131
, pp.
70
84
.10.1016/S0010-2180(02)00394-2
29.
Archer
,
S. S.
,
2005
, “
Morphology of Unconfined and Confined Swirling Flow Under Non-Reacting and Combustion Conditions
,” Ph.D. thesis, University of Maryland, College Park, MD.
30.
Sirovich
,
L.
,
1987
, “Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
31.
Caver
,
D.
, and
Meyer
,
K. E.
,
2012
, “
LES of Turbulent Jet in Cross Flow: Part 2—POD Analysis and Identification of Coherent Structures
,”
Int. J. Heat Fluid Flow
,
36
, pp.
35
46
.10.1016/j.ijheatfluidflow.2012.03.010
32.
Kostka
,
S.
,
Lynch
,
A. C.
,
Huelskamp
,
B. C.
,
Kiel
,
B. V.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2012
, “
Characterization of Flame-Shedding Behavior Behind a Bluff-Body Using Proper Orthogonal Decomposition
,”
Combust. Flame
,
159
, pp.
2872
2882
.10.1016/j.combustflame.2012.03.021
33.
Kopp-Vaughan
,
K. M.
,
Jensen
,
T. R.
,
Cetegen
,
B. M.
, and
Renfro
,
M. W.
,
2012
, “
Analysis of Blowoff Dynamics From Flames With Stratified Fueling
,”
Proc. Combust. Inst.
,
34
, pp.
1491
1498
.10.1016/j.proci.2012.06.074
34.
Zhu
,
S.
, and
Acharya
,
S.
,
2012
, “
Dynamics of Lean Blowout in Premixed Combustion With Hydrogen Addition
,”
ASME
Paper No. GT2012-69189.10.1115/GT2012-69189
35.
Kuchta
,
J. M.
,
1985
, Investigation of Fire and Explosion Accidents in the Chemical, Mining, and Fuel-Related Industries, The International Society of Automation, Research Triangle Park, NC.
36.
Bizon
,
K.
,
Continillo
,
G.
,
Leistner
,
K. C.
,
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2009
, “
POD-Based Analysis of Cycle-To-Cycle Variations in an Optically Accessible Diesel Engine
,”
Proc. Combust. Inst.
,
32
, pp.
2809
2816
.10.1016/j.proci.2008.08.010
37.
D'Agostino
,
R. B.
, and
Stephens
,
M. A.
, eds.,
1986
,
Goodness of Fit Techniques
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.