The dynamic combustion process generates high amplitude pressure oscillations due to thermo-acoustic instabilities, which are excited within the gas turbine. The combustion instabilities have a significant destructive impact on the life of the liner material due to the high cyclic vibration amplitudes at elevated temperatures. This paper presents a methodology developed for mechanical integrity analysis relevant to gas turbine combustors and the results of an investigation of the combustion-acoustics-vibration interaction by means of structural dynamics. In this investigation, the combustion dynamics was found to be very sensitive to the thermal power of the system and the air-fuel ratio of the mixture fed into the combustor. The unstable combustion caused a dominant pressure peak at a characteristic frequency, which is the first acoustic eigenfrequency of the system. Besides, the higher-harmonics of this peak were generated over a wide frequency-band. The frequencies of the higher-harmonics were observed to be close to the structural eigenfrequencies of the system. The structural integrity of both the intact and damaged test specimens mounted on the combustor was monitored by vibration-based and thermal-based techniques during the combustion operation. The flexibility method was found to be accurate to detect, localize, and identify the damage. Furthermore, a temperature increase was observed around the damage due to hot gas leakage from the combustor that can induce detrimental thermal stresses enhancing the lifetime consumption.

References

References
1.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
2.
Rayleigh
,
J. W. S.
, and
Lindsay
,
R. B.
,
1945
,
The Theory of Sound
,
Dover
,
New York
.
3.
Crocker
,
D. S.
,
Nickolaus
,
D.
, and
Smith
,
C. E.
,
1999
, “
CFD Modeling of a Gas Turbine Combustor From Compressor Exit to Turbine Inlet
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
89
95
.10.1115/1.2816318
4.
Rao
,
M. S.
, and
Sivaramakrishna
,
G.
,
2009
, “
Performance Improvement of an Aero Gas Turbine Combustor
,”
ASME
Paper No. GT2009-59928.10.1115/GT2009-59928
5.
Kim
,
W.-W.
,
Van Slooten
,
P. R.
,
Malecki
,
R. E.
,
Syed
,
S.
,
Colket
,
M. B.
, and
Lienau
,
J. J.
,
2006
, “
Towards Modeling Lean Blow Out in Gas Turbine Flameholder Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
40
48
.10.1115/1.2032450
6.
McGuirk
,
J. J.
, and
Spencer
,
A.
,
2001
, “
Coupled and Uncoupled CFD Prediction of the Characteristics of Jets From Combustor Air Admission Ports
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
327
332
.10.1115/1.1362319
7.
Bain
,
D. B.
,
Smith
,
C. E.
,
Liscinsky
,
D. S.
, and
Holdeman
,
J. D.
,
1999
, “
Flow Coupling Effects in Jet-in-Crossflow Flowfields
,”
J. Propul. Power
,
15
(
1
), pp.
10
16
.10.2514/2.5411
8.
Tinga
,
T.
,
van Kampen
,
J. F.
,
de Jager
,
B.
, and
Kok
,
J. B. W.
,
2007
, “
Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
69
79
.10.1115/1.2360603
9.
Bradley
,
D.
,
Gaskell
,
P. H.
,
Gu
,
X. J.
,
Lawes
,
M.
, and
Scott
,
M. J.
,
1998
, “
Premixed Turbulent Flame Instability and NO Formation in a Lean-Burn Swirl Burner
,”
Combust. Flame
,
115
(
4
), pp.
515
538
.10.1016/S0010-2180(98)00024-8
10.
Cohen
,
J. C.
, and
Anderson
,
T.
, 1996, “
Experimental Investigation of Near-Blowout Instabilities in a Lean, Premixed Step Combustion
,” AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 15–18,
AIAA
Paper No. 96-0819.10.2514/6.1996-819
11.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
5
(
19
), pp.
751
763
.10.2514/2.6192
12.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High Intense Gas Turbine Combustion Systems
,”
Combustion Sci. Technol.
,
174
, pp.
99
128
.10.1080/00102200208984089
13.
Hubbard
,
S.
, and
Dowling
,
A. P.
,
2001
, “
Acoustic Resonances of an Industrial Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
766
773
.10.1115/1.1370975
14.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
15.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
16.
Tufano
,
S.
,
Stopford
,
P.
,
Roman Casado
,
J. C.
, and
Kok
,
J. B. W.
,
2012
, “
Modelling Flame-Generated Noise in a Partially Premixed, Bluff Body Stabilized Model Combustor
,”
ASME
Paper No. GT2012-69501.10.1115/GT2012-69501
17.
Junger
,
M. C.
, and
Feit
,
D.
,
1972
,
Sound, Structures, and Their Interaction
,
MIT
,
Cambridge, MA
.
18.
Fahy
,
F.
, and
Gardonio
,
P.
,
Sound and Structural Vibration—Radiation, Transmission and Response
, 2nd ed.,
Elsevier
,
New York
.
19.
Huls
,
R. A.
,
van Kampen
,
J. F.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
, and
de Boer
,
A.
,
2008
, “
Acoustoelastic Interaction in Combustion Chambers: Modeling and Experiments
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p. 051505.10.1115/1.2938391
20.
Huls
,
R. A.
,
Sengissen
,
A. X.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
,
Poinsot
,
T.
, and
de Boer
,
A.
,
2007
, “
Vibration Prediction in Combustion Chambers by Coupling Finite Elements and Large Eddy Simulations
,”
J Sound Vib
,
304
(
1–2
), pp.
224
229
.10.1016/j.jsv.2007.02.027
21.
Khatir
,
Z.
,
Pozarlik
,
A. K.
,
Cooper
,
R. K.
,
Watterson
,
J. W.
, and
Kok
,
J. B. W.
,
2008
, “
Numerical Study of Coupled Fluid-Structure Interaction for Combustion System
,”
Int. J. Numer. Methods Fluis
,
56
(
8
), pp.
1343
1349
.10.1002/fld.1701
22.
Alemela
,
R.
,
Roman Casado
,
J. C.
,
Kumar
,
S.
, and
Kok
,
J.
, 2011, “
Simulation of Limit Cycle Pressure Oscillation With Coupled Fluid-Structure Interactions in a Model Combustor
,”
18th International Congress on Sound and Vibration
(ICSV 18), Rio de Janeiro, Brazil, July 10–14.
23.
Shahi
,
M.
,
Kok
,
J. B. W.
, and
Alemela
,
P. R.
,
2012
, “
Simulation of 2-Way Fluid Structure Interaction in a 3D Model Combustor
,”
ASME
Paper No. GT2012-69681.10.1115/GT2012-69681
24.
Altunlu
,
A. C.
,
Shahi
,
M.
,
Pozarlik
,
A.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
, and
de Boer
,
A.
,
2012
, “
Fluid-Structure Interaction on the Combustion Instability
,”
19th International Congress on Sound and Vibration
(ICSV 2012),
Vilnius, Lithuania
, July 8–12.
25.
Visser
,
R.
,
2004
, “
A Boundary Element Approach to Acoustic Radiation and Source Identification
,” Ph.D. thesis, University of Twente, Enschede, Netherlands.
26.
Blevins
,
R. D.
,
2001
,
Formulas for Natural Frequency and Mode Shape
,
Robert E. Krieger
,
Malabar, FL
.
27.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
28.
ANSYS® Academic Research
, “
Help System: Acoustics
,” Release 14.0, Ansys, Inc.
29.
Cawley
,
P.
, and
Adams
,
R. D.
,
1979
, “
The Location of Defects in Structures From Measurements of Natural Frequencies
,”
J. Strain Anal. Eng. Des.
,
14
(
2
), pp.
49
57
.10.1243/03093247V142049
30.
Stubbs
,
N.
, and
Osegueda
,
R.
,
1990
, “
Global Non-Destructive Damage Evaluation in Solids
,”
Int. J. Anal. Exp. Modal Anal.
,
5
, pp.
67
79
.
31.
Salawu
,
O. S.
,
1997
, “
Detection of Structural Damage Through Changes in Frequency: A Review
,”
Eng. Struct.
,
19
(
9
), pp.
718
723
.10.1016/S0141-0296(96)00149-6
32.
West
,
W. M.
, 1986, “
Illustration of the Use of Modal Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen
,”
4th International Modal Analysis Conference
, Los Angeles, CA, February 3–6, pp.
1
6
.
33.
Mayes
,
R. L.
, 1992, “
Error Localization Using Mode Shapes—An Application to a Two Link Robot Arm
,”
10th International Modal Analysis Conference
, San Diego, CA, February 3–6, pp.
886
891
.
34.
Stubbs
,
N.
,
Kim
,
J. T.
, and
Farrar
,
C. R.
, 1995, “
Field Verification of a Nondestructive Damage Localization and Severity Estimation Algorithm
,”
13th International Modal Analysis Conference
, Nashville, TN, February 13–16, pp.
210
218
.
35.
Ooijevaar
,
T. H.
,
Loendersloot
,
R.
,
Warnet
,
L. L.
,
de Boer
,
A.
, and
Akkerman
,
R.
,
2010
, “
Vibration Based Structural Health Monitoring of a Composite T-Beam
,”
Composite Struct.
,
92
(
9
), pp.
2007
2015
.10.1016/j.compstruct.2009.12.007
36.
Toksoy
,
T.
, and
Aktan
,
A. E.
,
1994
, “
Bridge-Condition Assessment by Modal Flexibility
,”
Exp. Mech.
,
34
(
3
), pp.
271
278
.10.1007/BF02319765
37.
Pandey
,
A. K.
, and
Biswas
,
M.
,
1994
, “
Damage Detection in Structures Using Changes in Flexibility
,”
J. Sound Vib.
,
169
(
1
), pp.
3
17
.10.1006/jsvi.1994.1002
38.
Pandey
,
A. K.
, and
Biswas
,
M.
,
1995
, “
Damage Diagnosis of Truss Structures by Estimation of Flexibility Change
,”
Modal Anal.
,
10
(
2
), pp.
104
117
.
39.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
,
1996
, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13070-MS.
40.
Aktan
,
A. E.
,
Lee
,
K. L.
,
Chuntavan
,
C.
, and
Aksel
,
T.
, 1994, “
Modal Testing for Structural Identification and Condition Assessment of Constructed Facilities
,”
12th International Modal Analysis Conference
, Honolulu, HI, January 31–February 3, pp.
462
468
.
41.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Goodman
,
R. S.
, 1997, “
Effects of Measurement Statistics on the Detection of Damage in the Alamosa Canyon Bridge
,”
15th International Modal Analysis Conference
, Orlando, FL, February 3–6, pp.
919
929
.
42.
Farrar
,
C. R.
,
Doebling
,
S. W.
,
Cornwell
,
P. J.
, and
Straser
,
E. G.
, 1997, “
Variability of Modal Parameters Measured on the Alamosa Canyon Bridge
,”
15th International Modal Analysis Conference
, Orlando, FL, February 3–6, pp.
257
263
.
43.
Altunlu
,
A. C.
,
van der Hoogt
,
P.
, and
de Boer
,
A.
,
2011
, “
Life Assessment by Fracture Mechanics Analysis and Damage Monitoring Technique on Combustion Liners
,”
ASME
Paper No. GT2011-46107.10.1115/GT2011-46107
44.
Berman
,
A.
, and
Flannell
,
W. G.
,
1971
, “
Theory of Incomplete Models of Dynamic Structures
,”
AIAA J.
,
9
(
8
), pp.
1481
–1487.10.2514/3.49950
45.
Adams
,
R. D.
,
Cawley
,
P.
,
Pye
,
C. J.
, and
Stone
,
B. J.
,
1978
, “
A Vibration Technique for Non-Destructively Assessing the Integrity of Structures
,”
J. Mech. Eng. Sci.
,
20
(
2
), pp.
93
100
.10.1243/JMES_JOUR_1978_020_016_02
46.
Huls
,
R. A.
,
2006
, “
Acousto-Elastic Interaction in Combustion Chambers
,” Ph.D. thesis, University of Twente, Enschede, Netherlands.
47.
Roman Casado
,
J. C.
,
Alemela
,
P. R.
, and
Kok
,
J. B. W.
, 2011, “
Experimental and Numerical Study of the Effect of Acoustic Time Delays on Combustion Stability
,”
18th International Congress on Sound and Vibration (ICSV 18)
, Rio de Janeiro, Brazil, July 10–14.
48.
Haynes International
,
2003
, “
High-Temperature Tech Brief: HAYNES® 230® Alloy
,” http://www.haynesintl.com/pdf/h3060.pdf
49.
Haynes International
, “
HAYNES® HR-120TM Alloy
,” http://www.haynesintl.com/pdf/h3125.pdf
50.
Roman Casado
,
J. C.
, and
Kok
,
J. B. W.
,
2012
, “
Non-Linear Effects in a Lean Partially Premixed Combustor During Limit Cycle Operation
,”
ASME
Paper No. GT2012-69164.10.1115/GT2012-69164
51.
Lieuwen
,
T.
, and
Neumeier
,
Y.
,
2002
, “
Nonlinear Pressure-Heat Release Transfer Function Measurements in a Premixed Combustor
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
99
105
.10.1016/S1540-7489(02)80017-7
52.
Seo
,
S.
,
2003
, “
Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor
,”
KSME Int. J.
,
17
(6), pp.
906
913
.10.1007/BF02983405
53.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
Taylor & Francis
,
Boca Raton
, FL.
54.
Damkohler
,
G.
,
1939
, “
The Effect of Turbulence on the Flame Velocity in Gas Mixtures
,”
Z. Elektrochem.
,
46
(11), pp.
601
626
(English translation: NACA Tech. Mem. No. 1112, 1947).
55.
Schelkin
,
K. I.
,
1943
, “
On Combustion in a Turbulent Flow
,”
J. Tech. Physics (USSR)
Vol. XIII(9–10), pp. 520–530 (English translation: NACA Tech. Mem. No. 1110, 1947).
56.
Blackstock
,
D. T.
,
2000
,
Fundamentals of Physical Acoustics
,
Wiley
,
New York
.
57.
Palmonella
,
M.
,
Friswell
,
M. I.
,
Mottershead
,
J. E.
, and
Lees
,
A. W.
,
2005
, “
Finite Element Models of Spot Welds in Structural Dynamics: Review and Updating
,”
Comput. Struct.
,
83
(
8–9
), pp.
648
661
.10.1016/j.compstruc.2004.11.003
58.
Link
,
L. R.
, 1990, “
Fatigue Crack Growth of Weldments
,” Fatigue and Fracture Testing of Weldments (ASTM STP 1058),
Sparks, NV, April 25, 1988, American Society for Testing and Materials
, Philadelphia, PA, pp.
16
33
,
ASTM
Paper No. STP24088S.10.1520/STP24088S
59.
Bucci
,
R. J.
, 1981, “
Effect of Residual Stress on Fatigue Crack Growth Rate Measurements
,” 13th National Symposium on Fracture Mechanics (ASTM STP 743),
Philadelphia, PA, June 16–18, American Society for Testing and Materials
, Philadelphia, PA, pp.
28
47
,
ASTM
Paper No. STP28789S.10.1520/STP28789S
60.
Kim
,
K. M.
,
Yun
,
N.
,
Jeon
,
Y. H.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2010
, “
Failure Analysis in After Shell Section of Gas Turbine Combustion Liner Under Base-Load Operation
,”
Eng. Failure Anal.
,
17
(
4
), pp.
848
856
.10.1016/j.engfailanal.2009.10.018
61.
Bhalla
,
K. S.
,
Zehnder
,
A. T.
, and
Han
,
X.
,
2003
, “
Thermomechanics of Slow Stable Crack Growth: Closing the Loop Between Experiments and Computational Modeling
,”
Eng. Fract. Mech.
,
70
(
17
), pp.
2439
2458
.10.1016/S0013-7944(03)00006-7
62.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
,
1986
, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
Int. J. Fract.
,
30
(
2
), pp.
79
102
.10.1007/BF00034019
You do not currently have access to this content.