Engine diagnostic practices are as old as the gas turbine itself. Monitoring and analysis methods have progressed in sophistication over the past six decades as the gas turbine evolved in form and complexity. While much of what will be presented here may equally apply to both stationary power plants and aeroengines, the emphasis will be on aeropropulsion. Beginning with primarily empirical methods centered on monitoring the mechanical integrity of the machine, the evolution of engine diagnostics has benefited from advances in sensing, electronic monitoring devices, increased fidelity in engine modeling, and analytical methods. The primary motivation in this development is, not surprisingly, cost. The ever increasing cost of fuel, engine prices, spare parts, maintenance, and overhaul all contribute to the cost of an engine over its entire life cycle. Diagnostics can be viewed as a means to mitigate risk in decisions that impact operational integrity. This can have a profound impact on safety, such as in-flight shutdowns (IFSD) for aero applications, (outages for land-based applications) and economic impact caused by unscheduled engine removals (UERs), part life, maintenance and overhaul, and the overall logistics of maintaining an aircraft fleet or power generation plants. This paper will review some of the methods used in the preceding decades to address these issues, their evolution to current practices, and some future trends. While several different monitoring and diagnostic systems will be addressed, the emphasis in this paper will be centered on those dealing with the aerothermodynamic performance of the engine.

References

References
1.
IATA
,
2011
, “Airline Maintenance Cost Executive Commentary,” International Air Transport Association, Montreal, Canada.
2.
Denman
,
J.
,
1996
, “Depot Maintenance: Opportunities to Privatize Repair of Military Engines.” U.S. General Accounting Office, Washington, DC, Report No. GAO/NSIAD-96-33.
3.
Urban
,
L. A.
,
1972
, “
Gas Path Analysis Applied to Turbine Engine Conditioning Monitoring
,”
J. Aircraft
,
10
(7), pp.
400
406
.10.2514/3.60240
4.
Urban
,
L. A.
,
1973
, “
Gas Path Analyzer
,” U.S. Patent 3,731,070.
5.
Urban
,
L. A.
,
1974
, “
Parameter Selection for Multiple Fault Diagnostics of Gas Turbine Engines
,”
AGARD Conference Proceedings No. 165
.
6.
Smetana
,
F.
,
1974
, “
Turbojet Engine Gas Path Analysis—A Review
,” AGARD-CP-165.
7.
Simon
,
D. L.
,
2010
, “
Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User's Guide
,” NASA/TM—2010-215840.
8.
Doel
,
D. L.
,
2003
, “
Development of Baselines, Influence Coefficients and Statistical Inputs for Gas Path Analysis
” (von Karman Lecture Notes), von Karman Institute, Rhode-Saint-Genese, Belgium.
9.
Volponi
,
A. J.
,
1999
, “
Gas Turbine Parameter Corrections
,”
ASME J. Eng. Gas Turb. Power
,
121
(
4
), pp.
613
621
.10.1115/1.2818516
10.
Mathioudakis
,
K.
,
2002
, “
Gas Turbine Test Parameters Corrections Including Operation With Water Injection
,”
ASME Turbine and Aeroengine Congress
,
Amsterdam, Netherlands
, June 3–6,
ASME
Paper No. GT2002-30466.10.1115/GT2002-30466
11.
Mathioudakis
,
K.
,
Aretakis
,
N.
, and
Tsalavoutas
A.
,
2002
, “
Increasing Diagnostic Effectiveness by Inclusion of Fuel Composition and Water Injection Effects
,”
ASME Turbine and Aeroengine Congress
,
Amsterdam, Netherlands
, June 3–6,
ASME
Paper No. GT2002-30032.10.1115/GT2002-30032
12.
Volponi
,
A. J.
,
1983
,
Gas Path Analysis: An Approach to Engine Diagnostic, Time-Dependent Failure Mechanisms and Assessment Methodologies
,
Cambridge University Press
, Cambridge, UK.
13.
Volponi
,
A. J.
,
1994
, “
Sensor Error Compensation in Engine Performance Diagnostics
,”
ASME Turbine and Aeroengine Congress
.
The Hague, Netherlands
, June 13–16,
ASME
Paper No. 94-GT-58.
14.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
MIT Press
,
Cambridge, MA
.
15.
Volponi
,
A. J.
,
2003
, “
Foundations of Gas Path Analysis I & II
” (von Karman Lecture Notes), von Karman Institute, Rhode-Saint-Genese, Belgium.
16.
Doel
,
D. L.
,
1992
, “
TEMPER—A Gas Path Analysis Tool for Commercial Jet Engines
,”
ASME Turbine and Aeroengine Congress
,
Cologne, Germany
, June 1–4, ASME Paper 92-GT-315.
17.
Doel
,
D. L.
,
1993
, “
An Assessment of Weighted-Least-Squares Based Gas Path Analysis
,”
ASME Turbine and Aeroengine Congress
,
Cincinnati, OH
, May 24–27, ASME Paper 93-GT-119.
18.
Stamatis
,
A.
, and
Papailiou
,
K. D.
,
1991
, “
Jet Engine Fault Detection With Discrete Operating Points Gas Path Analysis
,”
J. Propulsion
,
7
(
6
), pp.
1043
1048
.10.2514/3.23425
19.
Volponi
,
A. J.
, and
Urban
,
L. A.
,
1992
, “
Mathematical Methods of Relative Engine Performance Diagnostics
,”
SAE
Technical Paper 922048.10.4271/922048
20.
Provost
,
M. J.
,
1994
, “
The Use of Optimal Estimation Techniques in the Analysis of Gas Turbines
,” Ph.D. thesis, Cranfield University, Bedford, UK.
21.
Borguet
,
S.
, and
Leonard
,
O.
,
2010
, “
A Sparse Estimation Approach to Fault Isolation
,”
ASME J. Eng. Gas Turb. Power
,
132
(
2
), p.
021601
.10.1115/1.3156815
22.
Kobayashi
,
T.
, and
Simon
,
D. L.
,
2003
, “
Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics
,”
ASME Turbine and Aeroengine Congress
,
Atlanta, GA
, June 16–19,
ASME
Paper No. GT2003-38550.10.1115/GT2003-38550
23.
Aretakis
,
M. S.
,
2004
, “
Identification of Sensor Faults on Turbofan Engines Using Pattern Recognition Techniques
,”
Control Eng. Pract.
,
12
.10.1016/j.conengprac.2003.09.011
24.
Lee
,
Y. K.
,
Volovoi
,
V. V.
,
Yuan
,
M.
, and
Fisher
,
T.
,
2010
, “
A Fault Diagnosis Method for Industrial Gas Turbines Using Bayesian Data Analysis
,”
ASME J. Eng. Gas Turb. Power
,
132
(4), p.
041602
.10.1115/1.3204508
25.
Dienger
,
G.
, and
Rheilander
,
H.
,
1979
, “
Economic Review on ATLAS JT9D Gas Path Analysis Application
,” 17th ETMT Working Paper, Hamburg IF26, Rel 604.
26.
Danielsson
,
S. G.
,
1977
, “
Gas Path Analysis Applied to Pre and Post Overhaul Testing of the JT9D Turbofan Engine
,”
SAE
Technical Paper 770993.10.4271/770993
27.
Stroobach
,
J.
,
1980
, “
GPA Evaluation of On-Wing Recorded Data With a Limited Number of Sensors on the Engines Installed PH-DTA
,” KLM CED Report G-218.
28.
Stroobach
,
J.
,
1981
, “
GPA Testcell Evaluation Performed on CF6-50C Engines
,” KLM CED Report G-239.
29.
Merrington
,
G. L.
, “
Fault Diagnosis of Gas Turbine Engines From Transient Data
,”
ASME Turbine and Aeroengine Congress
,
Amsterdam, Netherlands
, June 5–9, ASME Paper No. 88-GT-209.
30.
Glenny
,
D. E.
1988
, “
Gas Path Analysis and Engine Performance Monitoring in A Chinook Helicopter
,”
AGARD: Engine Condition Monitoring
, North Atlantic Treaty Organization, Brussels, Belgium.
31.
Merrington
,
G.
,
Kwon
,
O.-K.
,
Goodwin
,
G.
, and
Carlsson
,
B.
,
1991
, “
Fault Detection and Diagnosis in Gas Turbines
,”
ASME J. Eng. Gas Turb. Power
, 13(2),
276
282
.10.1115/1.2906559
32.
Simon
,
D.
, and
Chia
,
T. L.
,
2002
, “
Kalman Filtering with State Equality Constraints
,”
IEEE Trans. Aerosp. Electron. Syst.
,
39
(
1
), pp.
128
136
.10.1109/7.993234
33.
Simon
,
D. L.
, and
Simon
,
D.
,
2003
, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”
ASME Turbine and Aeroengine Congress
,
Atlanta, GA
, June 16–19,
ASME
Paper No. GT2003-38584.10.1115/GT2003-38584
34.
Volponi
,
A. J.
,
2003
, “
Extending Gas Path Analysis Coverage for Other Fault Conditions
” (von Karman Lecture Notes), von Karman Institute, Rhode-Saint-Genese, Belgium.
35.
Marinai
,
L.
,
2004
, “
Gas-Path Diagnostics and Prognostics for Aero-Engines Using Fuzzy Logic and Time Series Analysis
,” Ph.D. thesis, Cranfield University, Bedford, UK, p.
50
.
36.
Jaw
,
L. C.
, and
Wu
,
D. N.
,
2002
, “
Anomaly Detection and Reasoning With Embedded Physical Model
,”
2002 IEEE Aerospace Conference
,
Big Sky, MT
, March 9–16.10.1109/AERO.2002.1036149
37.
Cleary
,
D. J.
,
Yu
,
L.
, and
Cuddihy
,
P. E.
,
2003
, “
A Novel Approach to Aircraft Engine Anomaly Detection and Diagnostics
,” GE Global Research Report No. 2003GRC117.
38.
Brotherton
,
T.
, and
Johnson
,
T.
,
2001
, “
Anomaly Detection for Advanced Military Aircraft Using Neural Networks
,”
2001 IEEE Aerospace Conference
,
Big Sky, MT
, March 10–17.10.1109/AERO.2001.931329
39.
Markou
,
M.
, and
Singh
,
S.
,
2003
, “
Novelty Detection: A Review
,”
Signal Process.
,
83
(
12
), pp.
2481
2496
.
40.
Volponi
,
A. J.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
,
2003
, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASME J. Eng. Gas Turb. Power
,
125
, pp.
917
924
.10.1115/1.1419016
41.
Butler
,
S. W.
,
2006
, “
A Performance Visualization, Assessment, and Tuning Methodology for Model-Based and Data-Driven Diagnostic Classification Systems
,” Master's thesis, University of Connecticut, Storrs, CT.
42.
Witt, C., 1984, “AIR 1839—A Guide to Aircraft Engine Vibration Monitoring Systems,”
SAE
Technical Paper 841458.10.4271/841458
43.
Muir
,
D. M.
, and
Howe
,
B.
,
1996
, “
In-Line Oil Debris Monitor (ODM) for the Advanced Tactical Fighter Engine
,”
SAE
Technical Paper 961308.10.4271/961308
44.
Miller
,
J.
, and
Kitaljevich
,
D.
,
2000
, “
In-Line Oil Debris Monitor for Aircraft Engine Condition Assessment
,”
2000 IEEE Aerospace Conference
,
Big Sky, MT
, March 18–25.10.1109/AERO.2000.877882
45.
Dempsey
,
J. P.
,
2000
, “
A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage
,” NASA Report No. TM-2000-210371.
46.
Dempsey
,
J. P.
, and
Afjeh
,
A.
,
2002
, “
Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic
,” NASA Report No. TM-2002-211126.
47.
Couch
,
R. P.
,
1978
, “
Detecting Abnormal Turbine Engine Deterioration Using Electrostatic Methods
,”
J. Aircraft
,
15
(10), pp. 692–695.10.2514/3.58430
48.
Prowie
,
H. E. G.
,
1997
, “
Gas Path Condition Monitoring During Accelerated Mission Testing of a Demonstrator Engine
,”
AIAA
Paper No. 97-2904.10.2514/6.1997-2904
49.
Fisher
,
C.
,
2000
, “
Gas Path Debris Monitoring—A 21st Century PHM Tool
,”
2000 IEEE Aerospace Conference
,
Big Sky, MT
, March 18–25.10.1109/AERO.2000.877918
50.
Fisher
,
C.
,
2000
, “
Gas Turbine Condition Monitoring Systems—An Integrated Approach
,” The Power Engineer,
1
(4), pp.
3
16
.
51.
Fisher
,
C.
,
2001
, “
Data and Information Fusion for Gas Path Debris Monitoring
,”
2001 IEEE Aerospace Conference
, Big Sky, MT, March 10–17.10.1109/AERO.2001.931321
52.
Luppold
,
R. H.
,
1989
, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,”
AIAA
Paper No. 89-2584.10.2514/6.1989-2584
53.
Gallops
,
G.W.
,
1992
, “
In-Flight Performance Diagnostic Capability of an Adaptive Engine Model
,”
AIAA
Paper No. 92-3746.10.2514/6.1992-3746
54.
Kerr
,
L. J.
,
1991
, “
Real-Time Estimation of Gas Turbine Engine Damage Using a Control Based Kalman Filter Algorithm
,”
ASME
Turbine and Aeroengine Congress.
Orlando, FL
, June 3–6,
ASME
Paper No. 91-GT-216.
55.
Hall
,
D. L.
,
Hansen
,
R. J.
, and
Lang
,
D. C.
, 1996, “
The Negative Information Problem in Mechanical Diagnostics
,”
ASME Turbine and Aeroengine Congress
,
Birmingham, UK
, June 10–13, ASME Paper 96-GT-035.
56.
Volponi
,
A. J.
, Brotherton, T., Luppold, R., and Simon, D. L.,
2003
, “
Development of an Information Fusion System for Engine Diagnostics and Health Management
,”
JANNAF 39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Hazards/3rd Modeling and Simulation Joint Subcommittee Meeting
,
Colorado Springs, CO
, December 1–5.
57.
Volponi
,
A. J.
,
2005
, “
Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management
,” Glenn Research Center, Cleveland, OH, NASA Report No. CR-2005-214055.
58.
Liu
,
Y.
, Frederick, D. K., DeCastro, J. S., and Chan, W. W.,
2012
, “
User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
,” NASA/TM—2012-217432.
59.
Kriener
,
A.
, and
Lietzau
,
K.
, 2000,
The Use of Onboard Real-Time Models for Jet Engine Control, Project Report OBIDICOTE
,
MTU Aero Engines
,
Munich, Germany
.
60.
SAE
, 2013, “Determination of Costs and Benefits From Implementing an Engine Health Management System.” SAE Standard ARP4176.
61.
Culley
,
D.
,
2009
, “
More Intelligent Gas Turbine Engines
,” RTO Technical Report, TR-AVT-128.
62.
Hess
,
A.
,
2004
, “
PHM a Key Enabler for the JSF Autonomic Logistics Support Concept
,”
2004 IEEE Aerospace Conference
,
Big Sky, MT
, March 6–13.10.1109/AERO.2004.1368171
63.
Ring
,
D.
,
2003
, “Control Interaction With Diagnostics and Fault Tolerant Control,” (von Karman Lecture Notes”), von Karman Institute, Rhode-Saint-Genese, Belgium.
64.
Garg
,
S.
,
2004
,
Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems
,” NASA/TM—2004-212915.
65.
Simon
,
D. L.
,
Garg
,
S.
,
Hunter
,
G. W.
,
Guo
,
T.
, and
Semega
,
K.
,
2004
, “
Sensor Needs for Control and Health Management of Intelligent Aircraft Engines
,” NASA/TM—2004-213202.
66.
Litt
,
J. S.
,
2005
, “
A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
,” NASA/TM—2005-213622.
67.
Wiseman
,
M.
,
2005
, “
Intelligent Engine Systems: Work Element 1.2: Malfunction and Operator Error Reduction
,” NASA/CR—2005-213964.
68.
Fletcher
,
C. C.
,
2004
, “
A Vision for the Intelligent Pipeline System and the Role of the Intelligent Engine
,”
GMRC—2004 Gas Machinery Conference
,
Albuquerque, NM
, October 4–6.
69.
Turso
,
J. A.
,
2008
, “
Toward an Intelligent, Deterioration Accommodating Controller for Aging Turbofan Engines
,”
Aeronaut. J.
,
112
(
1137
), pp.
641
652
.
70.
Rausch
,
R.
,
2004
, “
Towards In-Flight Detection and Accommodation of Faults in Aircraft Engines
,” AIAA 1st Intelligent Systems Technical Conference, Chicago, IL, September 20-22,
AIAA
Paper No. 2004-6463.10.2514/6.2004-6463
71.
Van Essen
,
H.
,
1998
, “
Modeling and Model Based Control of Turbomachinery
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands.
72.
Brotherton
,
T.
, Volponi, A. J., Luppold, R., and Simon, D. L.,
2003
, “
eSTORM: Enhanced Self Tuning On-Board Real-Time Engine Model
,”
2003 IEEE Aerospace Conference
,
Big Sky, MT
, March 8–15, Paper No. 1023.10.1109/AERO.2003.1234150
73.
Volponi
,
A. J.
,
2005
, “
Use of Hybrid Engine Modeling for On-Board Module Performance Tracking
,” ASME Turbine and Aeroengine Congress,
Reno, NV
, June 6–9,
ASME
Paper No. GT2005-68169.10.1115/GT2005-68169
74.
Volponi
,
A. J.
,
2007
, “
Adaptive On-Wing Gas Turbine Engine Performance Estimation
,”
2007 IEEE Aerospace Conference
.
Big Sky, MT
, March 3–10.10.1109/AERO.2007.352836
75.
Volponi
,
A. J.
, Brotherton, T., and Luppold, R.,
2008
, “
Empirical Tuning of an On-Board Gas Turbine Engine Model for Real-Time Module Performance Estimation
,”
ASME J. Eng. Gas Turb. Power
,
130
(
2
), p.
021604
.10.1115/1.2799527
76.
Borguet
,
S.
,
2006
, “
A Way to Deal With Model-Plant Mismatch for Reliable Diagnosis in Transient Operation
,” ASME Turbine and Aeroengine Congress,
Barcelona, Spain
, May 8–11,
ASME
Paper No. GT2006-90412.10.1115/GT2006-90412
77.
Li
,
Y. G.
, DeWallef, P., and Leonard, O.,
2003
, “
Gas Turbine Diagnostic Approach With Transient Measurements
,”
Proc. IMechE A J. Power Energy
,
217
(
A2
), pp.
169
177
.10.1243/09576500360611317
78.
Ogaji
,
S. O. T.
, Li, Y. G., Sampath, S., and Singh, R.,
2003
, “
Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks
,”
ASME Turbine and Aeroengine Congress
.
Atlanta, GA
, June 16–19,
ASME
Paper No. GT2003-38423.10.1115/GT2003-38423
79.
Sampath
,
S.
, Ogaji, S. O. T., Li, Y. G., and Singh, R.,
2003
, “
Fault Diagnosis of a Two Spool Turbo-Fan Engine Using Transient Data: A Genetic Algorithm Approach
,”
ASME Turbine and Aeroengine Congress
.
Atlanta, GA
, June 16–19,
ASME
Paper No. GT2003-38300.10.1115/GT2003-38300
80.
Simmons
,
J. C.
, and
Danai
,
K.
,
2012
, “
In-Flight Isolation of Degraded Engine Components by Shape Comparison of Transient Outputs
,”
ASME J. Eng. Gas Turb. Power
,
134
(
6
), p.
061602
.10.1115/1.4005814
81.
Borguet
,
S.
, DeWallef, P., and Leonard, O.,
2010
, “
A Study on Engine Health Monitoring in the Frequency Domain
,”
ASME Turbine and Aeroengine Congress
,
Glasgow, Scotland
, June 14–18,
ASME
Paper No. GT2010-22635.10.1115/GT2010-22635
82.
Kamboukos
,
P.
, and
Mathioudakis
K.
,
2007
, “
Turbofan Engine Health Assessment by Combining Steady and Transient State Aerothermal Data
,”
7th European Turbomachinery Conference
,
Athens, Greece
, March 5-9, Paper NO. 137.
83.
SAE, 2013
, “Guidelines for Engine Health Management System Software Assurance Levels,” SAE Standard ARP 5987.
84.
Taylor
,
B. J.
, ed.,
2006
,
Models and Procedures for the Verification and Validation of Artificial Neural Networks
,
Springer Science
,
New York
.
85.
Menzies
,
T.
, and
Pecheur
,
C.
,
2005
,
Verification and Validation and Artificial Intelligence, Advances in Computers
, Vol.
65
Elsevier
,
Amsterdam
.
86.
Jacklin
,
S. A.
, Schumann, J. M., Gupta, P. P., Richard, M., Guenther, K., and Soares, F.,
2005
, “
Towards Development of Advanced Verification and Validation Tools for the Certification of Learning Systems in Aerospace Applications
,”
AIAA Infotech
,
Arlington, VA
, September 26–29.
AIAA
Paper No. 2005-6912.10.2514/6.2005-6912
87.
Jacklin
,
S.
,
2004
, “
Verification, Validation and Certification Challenges for Adaptive Flight Control Systems Software
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
,
Providence, RI
, August 16–19,
AIAA
Paper No. 2004-5258.10.2514/6.2004-5258
88.
The Problem Solving Group of Bern, Switzerland,
1976
, “
Impossible Problem
,”
Math. Mag.
50
(
5
), p.
268
.
You do not currently have access to this content.