This paper presents a multileaf foil bearing (MLFB), which consists of four resilient top foils and four stiff bump foils underneath; thus, a high supporting capacity and a high damping capacity can be achieved. A specially designed test rig is used to identify the structural stiffness and damping coefficients of the MLFB. The rotor of the test rig is supported by two journal MLFBs and a thrust active magnetic bearing (AMB) and the static and dynamic loads are applied by two radial AMBs. The tests on MLFBs were conducted under conditions of no shaft rotation at different angular positions and journal displacements with different excitation frequency. A frequency domain identification method is presented to determine the stiffness and damping coefficients. Static measurements show nonlinear deflections with applied forces, which varies with the orientation of the load angular position. The dynamic measurements show that the stiffness and equivalent viscous damping change with the excitation frequency. Furthermore, the stiffness and damping coefficients are related to the operating position where dynamic load tests were conducted. The investigation provides extensive measurements of the static and dynamic characteristics of the MLFB. These results can serve as a benchmark for the calibration of analytical tools under development.

References

References
1.
Heshmat
,
C. A.
and
Heshmat
,
H.
,
1995
, “
An Analysis of Gas-Lubricated, Multileaf Foil Journal Bearings With Backing Springs
,”
ASME J. Tribol.
,
117
, pp.
437
443
.10.1115/1.2831272
2.
DellaCorte
,
C.
,
2012
, “
Oil-Free Shaft Support System Rotordynamics: Past, Present and Future Challenges and Opportunities
,”
Mech. Syst. Signal Proc.
,
29
, pp.
67
76
.10.1016/j.ymssp.2011.07.024
3.
Heshmat
,
H.
,
Walton
,
J. F.
II
, and
Tomaszewski
,
M. J.
,
2005
, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,”
ASME
Paper No. GT2005-68404. 10.1115/GT2005-68404
4.
Radil
,
K. C.
and
DellaCorte
,
C.
,
2009
, “
Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications
,”
65th American Helicopter Society International Annual Forum
, Grapevine, TX, May 27–29, Paper No. ARL-TR-4873.
5.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
6.
Heshmat
,
H.
,
1994
, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
,
116
, pp.
287
295
.10.1115/1.2927211
7.
Agrawal
,
G. L.
,
1998
, “
Foil Air Bearings Cleared to Land
,”
ASME Mech. Eng.
,
120
(
7
), pp.
78
80
.
8.
Barnett
,
M. A.
and
Silver
,
A.
,
1970
, “
Application of Air Bearing to High-Speed Turbomachinery
,”
SAE
Paper No. 700720. 10.4271/700720
9.
DellaCorte
,
C.
,
Lukaszewicz
, V
.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
,
2000
, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,”
STLE Tribol. Trans.
,
43
(
4
), pp.
774
780
.10.1080/10402000008982407
10.
Ku
,
C. P.
and
Heshmat
,
H.
,
1992
, “
Compliant Foil Bearing Structural Stiffness Analysis Part I: Theoretical Model—Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
,
114
, pp.
394
400
.10.1115/1.2920898
11.
Ku
,
C. P.
and
Heshmat
,
H.
,
1994
, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearing: Theoretical Considerations
,”
STLE Tribol. Trans.
,
37
, pp.
525
533
.10.1080/10402009408983325
12.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
STLE Tribol. Trans.
,
51
, pp.
254
264
.10.1080/10402000701772579
13.
DellaCorte
,
C.
and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
STLE Tribol. Trans.
,
43
, pp.
795
801
.10.1080/10402000008982410
14.
DellaCorte
,
C.
,
Zaldana
,
A.
, and
Radil
,
K.
,
2004
, “
A System Approach to the Solid Lubrication of Foil Air Bearing for Oil-Free Turbomachinery
,”
ASME J. Tribol.
,
126
, pp
200
207
.10.1115/1.1609485
15.
Radil
,
K. C.
and
DellaCorte
,
C.
,
2002
, “
The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings
,”
STLE Tribol. Trans.
,
45
(
2
), pp
199
204
.10.1080/10402000208982540
16.
Rubio
,
D.
and
San Andrés
,
L.
,
2005
, “
Structural Stiffness, Dry-Friction Coefficient and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME
Paper No. GT2005-68384. 10.1115/GT2005-68384
17.
Kim
,
T. H.
and
San Andrés
,
L.
,
2009
, “
Effects of a Mechanical Preload on the Dynamic Force Response of Gas Foil Bearings: Measurements and Model Predictions
,”
STLE Tribol. Trans.
,
52
, pp.
569
580
.10.1080/10402000902825721
18.
Zorzi
,
E. S.
,
1977
, “
Gas Lubricated Foil Bearing Development for Advanced Turbomachines
,” AiResearch Manufacturing Company of Arizona, Phoenix, Technical Report No. AFAPL TR-76-114.
19.
Arakere
,
N. K.
and
Nelson
,
H. D.
,
1992
, “
An Analysis of Gas-Lubricated Foil-Journal Bearings
,”
STLE Tribol. Trans.
,
35
, pp.
1
10
.10.1080/10402009208982082
20.
Arakere
,
N. K.
,
1996
, “
Analysis of Foil Journal Bearings With Backing Springs
,”
STLE Tribol. Trans.
,
39
, pp.
208
214
.10.1080/10402009608983522
21.
Agrawal
,
G. L.
,
1997
, “
Hydrodynamic Fluid Film Bearing
,” U.S. Patent No. 5,634,723.
22.
Saville
,
M. P.
and
Gu
,
A. L.
,
1992
, “
High Load Capacity Journal Foil Bearing
,” U.S. Patent No. 5,116,143.
23.
Lee
,
Y. B.
,
Kim
,
C. H.
,
Lee
,
N. S.
, and
Kim
,
T. H.
,
2002
, “
Hybrid Air Foil Journal Bearing and Manufacturing Method Thereof
,” U.S. Patent No. 2002/0097927 A1.
24.
Ye
,
T.
,
Yanhua
,
S.
, and
Lie
,
Y.
,
2012
, “
Steady State Control of Hybrid Foil-Magnetic Bearings
,”
ASME
Paper No. GT2012-68394. 10.1115/GT2012-68394
25.
Kasarda
,
M. E.
,
Marshall
,
J.
, and
Prins
,
R.
,
2007
, “
Active Magnetic Bearing Based Force Measurement Using the Multi-Point Technique
,”
Mech. Res. Commun.
,
34
(
1
), pp.
44
53
.10.1016/j.mechrescom.2006.06.003
26.
Kim
,
K. J.
and
Lee
,
C. W.
,
2003
, “
Identification of Dynamic Stiffness of Squeeze Film Damper Using Active Magnetic Bearing System as an Exciter
,”
The 2nd International Symposium on Stability Control of Rotating Machinery (ISCORMA-2), Gdansk, Poland, August 4–8
.
27.
Rubio
,
D.
and
San Andrés
,
L.
,
2006
, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
653
660
.10.1115/1.2056047
28.
Schweitzer
,
G.
and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
167
174
.
29.
Zutavern
,
Z. S.
and
Childs
,
D. W.
,
2008
, “
Identification of Rotordynamic Forces in a Flexible Rotor System Using Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
022504
.10.1115/1.2799529
30.
Coleman
,
H.
and
Steele
,
W.
,
2009
,
Experimentation, Validation and Uncertainty Analysis for Engineers
,
3rd ed.
,
John Wiley and Sons
,
New York
, pp.
61
65
.
31.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
,
2007
, “
Advancements in the Structural Stiffness and Damping of a Large Compliant Foil Journal Bearing: An Experimental Study
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
154
161
.10.1115/1.2360598
32.
DellaCorte
,
C.
,
2011
, “
Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery
,”
STLE Tribol. Trans.
,
54
(
4
), pp.
674
684
.10.1080/10402004.2011.589966
You do not currently have access to this content.