Hot-jet ignition of a combustible mixture has application in internal combustion engines, detonation initiation, and wave rotor combustion. Numerical predictions are made for ignition of combustible mixtures using a traversing jet of chemically active gas at one end of a long constant-volume combustor (CVC) with an aspect ratio similar to a wave rotor channel. The CVC initially contains a stoichiometric mixture of ethylene or methane at atmospheric conditions. The traversing jet issues from a rotating prechamber that generates gaseous combustion products, assumed at chemical equilibrium for estimating major species. Turbulent combustion uses a hybrid eddy-breakup model with detailed finite-rate kinetics and a two-equation k-ω model. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure, and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Pressure waves in the CVC chamber affect ignition through flame vorticity generation and compression. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive.

References

References
1.
Toulson
,
E.
,
Schock
,
H. J.
, and
Attard
,
W. P.
,
2010
, “
A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems
,”
SAE
Paper No. 2010-01-2263.10.4271/2010-01-2263
2.
Attard
,
W. P.
,
Toulson
,
E.
,
Huisjen
,
A.
,
Chen
,
X.
,
Zhu
,
G.
, and
Schock
,
H.
,
2012
, “
Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization
,”
SAE
Paper No. 2012-01-0823.10.4271/2012-01-0823
3.
Lieberman
,
D. H.
, and
Shepherd
,
J. E.
,
2002
, “
Detonation Initiation by Hot Turbulent Jet for Use in Pulse Detonation Engines
,”
38th Joint Propulsion Conference
,
Indianapolis, IN
, July 7–10,
AIAA
Paper No. 2002-3909.10.2514/6.2002-3909
4.
Matsutomi
,
Y.
,
Meyer
,
S. E.
,
Wijeyakulasuriya
,
S. D.
,
Izzy
,
Z.
,
Nalim
,
M. R.
,
Shimo
,
M.
,
Kowalkowski
,
M.
, and
Snyder
,
P. H.
,
2010
, “
Experimental Investigation on the Wave Rotor Combustor
,”
46th Joint Propulsion Conference
,
Nashville, TN
, July 25–28,
AIAA
Paper No. 2010-7043.10.2514/6.2010-7043
5.
Perera
,
U. I.
,
Wijeyakulasuriya
,
S. D.
, and
Nalim
,
M. R.
,
2011
, “
Hot Combustion Torch Jet Ignition Delay Time for Ethylene-Air Mixtures
,”
49th Aerospace Sciences Meeting
,
Orlando, FL
, January 4–7,
AIAA
Paper No. 2011-95.10.2514/6.2011-95
6.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
AIAA J. Propul. Power
,
25
(
4
), pp.
833
844
.10.2514/1.34081
7.
Perera
,
U. I.
,
2010
, “
Experimental Investigation Into Combustion Torch Jet Ignition of Methane-Air, Ethylene-Air, and Propane-Air Mixtures
,” M.S. thesis, Purdue University, Indianapolis, IN.
8.
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Interpreting Shock Tube Ignition Data
,”
Int. J. Chem. Kinetics
,
36
(
9
), pp.
510
523
.10.1002/kin.20024
9.
Vanpée
,
M.
, and
Wolfhard
,
H. G.
1959
, “
Comparison Between Hot Gas Ignition and Limit Flame Temperatures
,”
Am. Rocket Soc. J.
,
29
(
7
), pp.
517
519
.10.2514/8.4816
10.
Wolfhard
,
H. G.
,
1958
, “
The Ignition of Combustible Mixtures by Hot Gases
,”
Jet Propul.
,
28
(
12
), pp.
798
804
.10.2514/8.7472
11.
Fink
,
Z. J.
, and
Vanpée
,
M.
,
1975
, “
Overall Kinetics of Hot Gas Ignition
,”
Combust. Sci. Tech.
,
11
(
5–6
), pp.
229
238
.10.1080/00102207508946702
12.
Cato
,
R. J.
, and
Kuchta
,
J. M.
,
1966
, “
Hot Gas Ignition Temperatures of Hydrocarbon Fuel Vapor-Air Mixtures
,” U.S. Department of the Interior, Bureau of Mines, AD0643518.
13.
Tarzhanov
,
V. I.
,
Telichko
,
I. V.
,
Vil'danov
,
V. G.
,
Sdobnov
,
V. I.
,
Makarov
,
A. E.
,
Mukhin
,
S. L.
,
Koretskii
,
I. G.
,
Ogarkov
,
V. A.
,
Vlasov
,
V. V.
,
Zinchenko
,
A. D.
,
Vorob'ev
,
A. V.
,
Grachev
,
A. N.
,
Matkin
,
V. A.
, and
Potashnikov
,
V. A.
,
2006
, “
Detonation of Propane-Air Mixtures Under Injection of Hot Detonation Products
,”
Combust. Explos. Shock Waves
,
42
(
3
), pp.
336
345
.10.1007/s10573-006-0060-4
14.
Mayinger
,
F.
,
Jordan
,
M.
,
Eder
,
A.
,
Zaslonko
,
I. S.
,
Karpov
,
V. P.
, and
Frolov
,
S. M.
,
1999
, “
Flame-Jet Ignition of Fuel-Air Mixtures. Experimental Findings and Modeling
,”
17th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)
,
Heidelberg, Germany
, July 25–30.
15.
Bilgin
,
M.
,
1998
, “
Stationary and Rotating Hot Jet Ignition and Flame Propagation in a Premixed Cell
,” Ph.D. dissertation, Aeronautics and Astronautics Dept., University of Washington, Seattle, WA.
16.
Bilgin
,
M.
,
Keller
,
J. J.
, and
Breidenthal
,
R. E.
,
1998
, “
Ignition and Flame Propagation With Rotating Hot Jets in a Simulated Wave Engine Test Cell
,”
AIAA
Paper No. 98-3399.10.2514/6.1998-3399
17.
Baronia
,
D.
,
Nalim
,
M. R.
, and
Akbari
,
P.
,
2007
, “
Numerical Study of Wave Rotor Ignition and Flame Propagation in a Single-Channel Rig
,”
AIAA
Paper No. 2007-5054.10.2514/6.2007-5054
18.
Murphy
,
K.
, “
Experimental Investigation of Traversing Hot-Jet Ignition of Ethylene, and Propane-Air Mixtures in a Constant-Volume Combustor
,” M.S.M.E. thesis, Department of Mechanical Engineering, Purdue University, Indianapolis, IN (unpublished in preparation).
19.
User Guide
,
2010
, “STAR-CCM+ Version 5.06.010,” CD-adapco, Melville, NY.
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Modeling for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
21.
Spalding
,
D. B.
,
1971
, “
Mixing and Chemical Reaction in Steady Confined Turbulent Flames
,”
Symp. (Int.) Combust.
,
13
(1), pp.
649
657
.10.1016/S0082-0784(71)80067-X
22.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1976
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust.
,
16
(1), pp.
719
729
.10.1016/S0082-0784(77)80366-4
23.
Hilbert
,
R.
,
Tap
,
F.
,
El-Rabii
,
H.
, and
Thévenin
,
D.
,
2004
, “
Impact of Detailed Chemistry and Transport Models on Turbulent Combustion Simulations
,”
Prog. Energ. Combust. Sci.
,
40
, pp.
61
117
.10.1016/j.pecs.2003.10.001
24.
Magel
,
H. C.
,
Schnell
,
U.
, and
Hein
,
K. R. G.
,
1996
, “
Simulation of Detailed Chemistry in a Turbulent Combustor Flow
,”
Symp. (Int.) Combust.
,
26
(1), pp.
67
74
.10.1016/S0082-0784(96)80201-3
25.
Luo
,
Z.
,
Yoo
,
C. S.
,
Richardson
,
E. S.
,
Chen
,
J. H.
,
Law
,
C. K.
, and
Lu
,
T. F.
,
2012
, “
Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow
,”
Combust. Flame
,
159
(
1
), pp.
265
274
.10.1016/j.combustflame.2011.05.023
26.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” http://ignis.usc.edu/USC_Mech_II.htm
27.
Kazakov
,
A.
, and
Frenklach
,
M.
, “
Reduced Reaction Sets Based on GRI-Mech 1.2
,” University of California at Berkeley, Berkeley, CA, http://www.me.berkeley.edu/drm/
28.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
GRI-Mech
,” Gas Research Institute, http://www.me.berkeley.edu/gri_mech/
29.
Depcik
,
C.
,
2000
, “
Open-Ended Thermodynamic Cycle Simulation
,” M.S. thesis, University of Michigan, Ann Arbor, MI.
30.
Gordon
,
S.
, and
McBride
,
B. J.
1996
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
,” NASA Reference Publication 1311.
31.
Rajagopal
,
M.
,
Karimi
,
A.
, and
Nalim
,
R.
,
2012
, “
Wave Rotor Pressure Gain Combustion Analysis for Power Generation and Gas Turbine Applications
,”
ASME Gas Turbine India Conference
, Mumbai, India, December 1,
ASME
Paper No. GTIndia2012-9741.10.1115/GTINDIA2012-9741
You do not currently have access to this content.