The present paper investigates two different solarized combined cycle layout configurations. In the first scheme, a solarized gas turbine is coupled to a solar tower. Pressurized air at the compressor exit is sent to the solar tower receiver before entering the gas turbine (GT) combustor. Here, temperature is increased up to the nominal turbine inlet value through natural gas combustion. In the second combined cycle (CC) layout, solar energy is collected by line focusing parabolic trough collectors and used to produce superheated steam in addition to the one generated in the heat recovery boiler. The goal of the paper is to compare the thermodynamic performance of these concentrating solar power (CSP) technologies when working under realistic operating conditions. Commercial software and in-house computer codes were combined together to predict CSP plant performance both on design and off-design conditions. Plant simulations have shown the beneficial effect of introducing solar energy at high temperature in the Joule–Brayton cycle and the drawback in terms of GT performance penalization due to solarization. Results of yearly simulations on a 1 h basis for the two considered plant configurations are presented and discussed. The main thermodynamic parameters such as temperatures, pressure levels, and air and steam flow rates are reported for two representative days.

References

References
1.
Sheu
,
E. J.
,
Mitsos
,
A.
,
Eter
,
A. A.
,
Mokheimer
,
E. A.
,
Habib
,
M. A.
, and
Al-Qutub
,
A.
,
2012
, “
A Review of Hybrid Solar-Fossil Fuel Power Generation Systems and Performance Metrics
,”
ASME J. Solar Energy Eng.
,
134
, p.
041006
.10.1115/1.4006973
2.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S. A.
,
Kelly
,
B.
,
Kistner
,
R.
,
Ortmanns
,
W.
,
Pitz-Pall
,
R.
, and
Price
,
H.
,
2004
, “
Trough Integration Into Power Plants—A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
29
, pp.
947
959
.10.1016/S0360-5442(03)00199-3
3.
Kelly
,
B.
,
Herrmann
,
U.
, and
Hale
,
M. J.
,
2001
, “
Optimization Studies for Integrated Solar Combined Cycle Systems
,” Solar Forum 2001, Washington, DC, April 21–25.
4.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Erbes
,
M.
,
2011
, “
Gas Turbine/Solar Parabolic Trough Hybrid Designs
,”
ASME
Paper No. GT2011-45184.10.1115/GT2011-45184
5.
Montes
,
M. J.
,
Rovira
,
A.
,
Munoz
,
M.
, and
Martinez-Val
,
J. M.
,
2011
, “
Performance Analysis of an Integrated Solar Combined Cycle Using Direct Steam Generation in Parabolic Trough Collectors
,”
Appl. Energy
,
88
, pp.
3228
3238
.10.1016/j.apenergy.2011.03.038
6.
Ojo
,
C. O.
,
Pont
,
D.
,
Conte
,
E.
, and
Carroni
,
R.
,
2012
, “
Performance Evaluation of an Integrated Solar Combined Cycle
,”
ASME
Paper No. GT2012-68134.10.1115/GT2012-68134
7.
Khaldi
,
F.
,
2012
, “
Energy and Exergy Analysis of the First Hybrid Solar-Gas Power Plant in Algeria
,” ECOS 2012, Perugia, Italy, June 26–29.
8.
Heide
,
S.
,
Gampe
,
U.
,
Orth
,
U.
,
Beukenberg
,
M.
,
Gericke
,
B.
,
Freimark
,
M.
,
Langnickel
,
U.
,
Pitz-Paal
,
R.
,
Buck
,
R.
, and
Giuliano
,
S.
,
2010
, “
Design and Operational Aspects of Gas and Steam Turbines for the Novel Solar Hybrid Combined Cycle SHCC®
,”
ASME
Paper No. GT2010-22124.10.1115/GT2010-22124
9.
Buck
,
R.
, and
Friedmann
,
S.
,
2007
, “
Solar-Assisted Small Solar Tower Trigeneration Systems
,”
ASME J. Solar Energy Eng.
,
129
, pp.
349
354
.10.1115/1.2769688
10.
Garcia
,
P.
,
Ferriere
,
A.
,
Flamant
,
G.
,
Soler
,
R.
, and
Gagnepain
,
B.
,
2008
, “
Solar Field Efficiency and Electricity Generation Estimations for a Hybrid Solar Gas Turbine Project in France
,”
ASME J. Solar Energy Eng.
,
130
, p.
014502
.10.1115/1.2807211
11.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
M. J. M.
,
Altwegg
,
P.
, and
Enrile
,
J.
,
2006
, “
Solar Gas Turbine Systems: Design, Cost and Perspective
,”
Solar Energy
,
80
, pp.
1231
1246
.10.1016/j.solener.2005.09.007
12.
Spelling
,
J.
,
Favrat
,
D.
,
Martin
,
A.
, and
Augsburger
,
G.
,
2011
, “
Thermoeconomic Optimization of a Combined-Cycle Solar Tower Power Plant
,”
Energy
,
41
, pp.
113
120
.10.1016/j.energy.2011.03.073
13.
Barigozzi
,
G.
,
Bonetti
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Ravelli
,
S.
,
2012
, “
Solar Hybrid Combined Cycle Performance Prediction: Influence of GT Model and Different Spool Arrangement
,”
ASME J. Eng. Gas Turb. Power
,
134
, p.
121701
.10.1115/1.4007340
14.
European Commission, 2005, “SOLGATE: Solar Hybrid Gas Turbine Electric Power System,” Project Report No. EUR 21615, European Commission, Brussels, Belgium, http://ec.europa.eu/research/energy/pdf/solgate_en.pdf
15.
Dickey
,
B.
,
2011
, “
Test Results From a Concentrated Solar Microturbine Brayton Cycle Integration
,”
ASME
Paper No. GT2011-45918.10.1115/GT2011-45918
16.
Lippke
,
F.
,
1995
, “
Simulation of the Part-Load Behavior of a 30 MWe SEGS Plant
,”
Sandia National Laboratories
, Albuquerque, NM, Technical Report SAND--95-129310.2172/95571.
17.
Barigozzi
,
G.
,
Bonetti
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Thermal Performance Prediction of a Solar Hybrid Gas Turbine
,”
Solar Energy
,
86
, pp.
2116
2127
.10.1016/j.solener.2012.04.014
You do not currently have access to this content.