This paper presents the metaheuristic design and optimization of fuzzy-based gas turbine engine (GTE) fuel flow controller by means of a hybrid invasive weed optimization/particle swarm optimization (IWO/PSO) algorithm as an innovative guided search technique. In this regard, first, a Wiener model for the GTE as a block-structured model is developed and validated against experimental data. Subsequently, because of the nonlinear nature of GTE, a fuzzy logic controller (FLC) strategy is considered for the engine fuel system. For this purpose, an initial FLC is designed and the parameters are then tuned using a hybrid IWO/PSO algorithm where the tuning process is formulated as an engineering optimization problem. The fuel consumption, engine safety, and time response are the performance indices of the defined objective function. In addition, two sets of weighting factors for objective function are considered, whereas in one of them savings in fuel consumption and in another achieving a short response time for the engine is a priority. Moreover, the optimization process is performed in two stages during which the database and the rule base of the initial FLC are tuned sequentially. The simulation results confirm that the IWO/PSO-FLC approach is effective for GTE fuel controller design, resulting in improved engine performance as well as ensuring engine protection against physical limitations.

References

References
1.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics & Astronautics
,
Reston, VA
, p.
361
.
2.
Chipperfield
,
A. J.
,
Bica
,
B.
, and
Fleming
,
P. J.
,
2002
, “
Fuzzy Scheduling Control of a Gas Turbine Aero-Engine: A Multiobjective Approach
,”
IEEE Trans. Ind. Electron.
,
49
(
3
), pp.
536–548
.10.1109/TIE.2002.1005378
3.
Diao
,
Y.
, and
Passino
,
K. M.
,
2002
, “
Adaptive Neural/Fuzzy Control for Interpolated Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
10
, pp.
583
595
.10.1109/TFUZZ.2002.803493
4.
Jong-Wook
,
K.
, and
Woo
,
K. S.
,
2003
, “
Design of Incremental Fuzzy PI Controllers for a Gas-Turbine Plant
,”
IEEE/ASME Trans. Mechatron.
,
8
(
3
), pp.
410–414
.10.1109/TMECH.2003.816858
5.
Watanabe
,
A.
,
Olcmen
,
S. M.
, and
Leland
,
R. P.
,
2006
, “
Soft Computing Applications on a SR-30 Turbojet Engine
,”
Fuzzy Sets Syst.
,
157
, pp.
3007
3024
.10.1016/j.fss.2006.05.011
6.
Branke
,
J.
,
Deb
,
K.
, and
Miettinen
,
K.
,
2008
,
Multiobjective Optimization: Interactive and Evolutionary Approaches
,
Springer-Verlag
,
Berlin
, p.
470
.
7.
Basak
,
A.
,
2010
, “
A Modified Invasive Weed Optimization Algorithm for Time-Modulated Linear Antenna Array Synthesis
,”
IEEE Congress on Evolutionary Computation
,
Barcelona
, July 18–23.10.1109/CEC.2010.5586276
8.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neutral Networks
, Perth, WA, November 27– December 1, pp.
1942–1948
.10.1109/ICNN.1995.488968
9.
Goudos
,
S. K.
,
Moysiadou
,
V.
, and
Samaras
,
T.
,
2010
, “
Application of a Comprehensive Learning Particle Swarm Optimizer to Unequally Spaced Linear Array Synthesis With Sidelobe Level Suppression and Null Control
,”
IEEE Antennas Wireless Propagat. Lett.
,
9
, pp.
125
129
.10.1109/LAWP.2010.2044552
10.
Karimkashi
,
S.
, and
Kishk
,
A. A.
,
2010
, “
Invasive Weed Optimization and Its Features in Electromagnetics
,”
IEEE Trans. Antennas Propagat.
,
58
(
4
), pp.
1269
1278
.10.1109/TAP.2010.2041163
11.
Xiao
,
S.
,
Bai
,
Y.
, and
Liu
,
C.
,
2012
, “
A Hybrid IWO/PSO Algorithm for Pattern Synthesis of Conformal Phased Arrays
,”
IEEE Trans. Antennas Propagat
,
61
(
4
), pp.
2328–2332
.10.1109/TAP.2012.2231936
12.
Mehrabian
,
A. R.
, and
Lucas
,
C.
,
2006
, “
A Novel Numerical Optimization Algorithm Inspired From Weed Colonization
,”
Ecolog. Informat.
,
1
, pp.
355
366
.10.1016/j.ecoinf.2006.07.003
13.
Mehrabian
,
A. R.
, and
Yousefi-Koma
,
A.
,
2007
, “
Optimal Positioning of Piezoelectric Actuators on a Smart Fin Using Bio-Inspired Algorithms
,”
Aerosp. Sci. Tech.
,
11
, pp.
174
182
.10.1016/j.ast.2007.01.001
14.
Rad
,
H. S.
, and
Lucas
,
C.
,
2007
, “
A Recommender System Based on Invasive Weed Optimization Algorithm
,”
IEEE Congress on Evolutionary Computation
, Singapore, September 25–28, pp.
4297
4304
.10.1109/CEC.2007.4425032
15.
Dadalipour
,
B.
,
Mallahzadeh
,
A. R.
, and
Davoodi-Rad
,
Z.
,
2008
, “
Application of the Invasive Weed Optimization Technique for Antenna Configurations
,”
Loughborough Antennas and Propagation Conference
(
LAPC 2008
), Loughborough, UK, March 17–18, pp.
425–428
.10.1109/LAPC.2008.4516957
16.
Mallahzadeh
,
A. R.
,
Es'haghi
,
S.
, and
Alipour
,
A.
,
2009
, “
Design of an E-Shaped MIMO Antenna Using IWO Algorithm for Wireless Application at 5.8 GHz
,”
Prog. Electromag. Res.
,
90
, pp.
187
203
.10.2528/PIER08122704
17.
Mallahzadeh
,
A. R.
,
Es'haghi
,
S.
, and
Hassani
,
H. R.
,
2009
, “
Compact U-array MIMO Antenna Designs Using IWO Algorithm
,”
Int. J. RF Microw. CAE
,
19
(
5
), pp.
568
576
.10.1002/mmce.20379
18.
Zhang
,
X.
,
Wang
,
Y.
,
Cui
,
G.
,
Niu
,
Y.
, and
Xu
,
J.
,
2009
, “
Application of a Novel IWO to the Design of Encoding Sequences for DNA Computing
,”
Comput. Math. Appl.
,
57
, pp.
2001
2008
.10.1016/j.camwa.2008.10.038
19.
Hajimirsadeghi
,
H.
, and
Lucas
,
C.
,
2009
, “
A Hybrid IWO/PSO Algorithm for Fast and Global Optimization
,”
IEEE EUROCON 2009
,
St. Petersburg, Russia
, May 18–23, pp.
1964
1971
.10.1109/EURCON.2009.5167916
20.
Montazeri-Gh
,
M.
, and
Jafari
,
S.
,
2011
, “
Evolutionary Optimization for Gain Tuning of Jet Engine Min-Max Fuel Controller
,”
J. Propul. Power
,
27
(
5
), pp.
1015–1023
.10.2514/1.B34185
21.
Hoshino
,
Y.
, and
Takimoto
,
H.
,
2012
, “
PSO Training of the Neural Network Application for a Controller of the Line Tracing Car
,”
IEEE International Conference on Fuzzy Systems
(
FUZZ-IEEE
), Brisbane, Australia, June 10–15.10.1109/FUZZ-IEEE.2012.6251141
22.
Cai
,
L.
,
Rad
,
A. B.
, and
Chan
,
W. L.
,
2007
, “
A Genetic Fuzzy Controller for Vehicle Automatic Steering Control
,”
IEEE Trans. Veh. Tech.
,
56
(
2
), pp.
529–543
.10.1109/TVT.2006.889576
23.
Cordon
,
O.
,
Gomide
,
F.
,
Herrera
,
F.
,
Hoffmann
,
F.
, and
Magdalena
,
L.
,
2004
, “
Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends
,”
Fuzzy Sets Syst.
,
141
(
1
), pp.
5–31
.10.1016/S0165-0114(03)00111-8
24.
Yee
,
S. K.
,
Milanovic
,
J. V.
, and
Hughes
,
F. M.
,
2008
, “
Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies
,”
IEEE Trans. Power Syst.
,
23
(
1
), pp.
108–118
.10.1109/TPWRS.2007.907384
25.
Kulikov
,
G. G.
, and
Thompson
,
H. A.
,
2004
,
Dynamic Modeling of Gas Turbines
,
Springer, New York
.
26.
Montazeri-Gh
,
M.
, and
Safarabadi
,
M.
,
2009
, “
Modeling and Simulation of Aero Gas Turbine Engine Performance for Fuel Control System Design
,”
IUST Int. J. Eng. Sci.
,
20
(
2
).
You do not currently have access to this content.