This paper reports flashback limits and turbulent flame local displacement speed measurements in flames stabilized by a low swirl injector operated at elevated pressures and inlet temperatures with hydrogen and methane blended fuels. The goal of this study is to understand the physics that relate turbulent flame speed to flashback events at conditions relevant to gas turbine engines. Testing was conducted in an optically accessible single nozzle combustor rig at pressures ranging from 1 to 8 atm, inlet temperatures from 290 to 600 K, and inlet bulk velocities between 20 and 60 m/s for natural gas and a 90%/10% (by volume) hydrogen/methane blend. The propensity of flashback is dependent upon the proximity of the lifted flame to the nozzle that is itself dependent upon pressure, inlet temperature, and bulk velocity. Flashback occurs when the leading edge of the flame in the core of the flow ingresses within the nozzle, even in cases when the flame is attached to the burner rim. In general the adiabatic flame temperature at flashback is proportional to the bulk velocity and inlet temperature and inversely proportional to the pressure. The unburned reactant velocity field approaching the flame was measured using a laser Doppler velocimeter with water seeding. Turbulent displacement flame speeds were found to be linearly proportional to the root mean square of the velocity fluctuations about the mean velocity. For identical inlet conditions, high-hydrogen flames had a turbulent flame local displacement speed roughly twice that of natural gas flames. Pressure, inlet temperature, and flame temperature had surprisingly little effect on the local displacement turbulent flame speed. However, the flow field is affected by changes in inlet conditions and is the link between turbulent flame speed, flame position, and flashback propensity.

References

1.
Lieuwen
,
T. V.
,
Yang
,
V.
, and
Yetter
,
R.
, eds.,
2009
,
Synthesis Gas Combustion
,
CRC Press, Boca Raton, FL
.
2.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turb. Power.
,
130
(1), p.
011506
.10.1115/1.2771243
3.
Bell
,
J.
,
Cheng
,
R.
,
Day
,
M.
, and
Shepherd
,
I.
,
2007
, “
Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
31
, pp.
1309
1317
.10.1016/j.proci.2006.07.216
4.
Baum
,
M.
,
Poinsot
,
T.
,
Haworth
,
D.
, and
Darabiha
,
N.
,
1994
, “
Direct Numerical Simulations of H2/O2/N2 Flames With Complex Chemistry in Two-Dimensional Turbulent Flows
,”
J. Fluid Mech.
,
281
, pp.
1
32
.10.1017/S0022112094003010
5.
Driscoll
,
J.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Eng. Combust. Sci.
,
34
(
1
), pp.
91
134
.10.1016/j.pecs.2007.04.002
6.
Cheng
,
R.
,
2009
, “
Turbulent Combustion Properties of Premixed Syngas
,”
Synthesis Gas Combustion
,
T.
Lieuwen
,
V.
Yang
, and
R.
Yetter
, eds., CRC Press, Boca Raton, FL, Ch. 5.
7.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2009
, “
Flame Front Characteristics and Turbulent Flame Speed of Lean Premixed Syngas Combustion at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2009-59477. 10.1115/GT2009-59477
8.
Marshall
,
A.
,
Venkateswaran
,
P.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Pressure Effects on the Turbulent Consumption Speeds of High H2 Mixtures
,”
ASME
Paper No. GT2012-68305. 10.1115/GT2012-68305
9.
Cheng
,
R.
,
Littlejohn
,
D.
,
Nazeer
,
W.
,
Smith
,
K.
,
2008
, “
Laboratory Studies of the Flow Field Characteristics of Low-Swirl Injectors for Adaptation to Fuel-Flexible Turbine
,”
ASME J. Eng. Gas Turb. Power
,
130
(2), p.
021501
.10.1115/1.2795786
10.
Koyama
,
M.
, and
Tachibana
,
S.
, “
Technical Applicability of Low-Swirl Fuel Nozzle for Liquid-Fueled Industrial Gas Turbine Combustor
,”
Fuel
,
107
, pp.
766
776
.10.1016/j.fuel.2013.01.038
11.
Chan
,
C.
,
Lau
,
K.
,
Chin
,
W.
, and
Cheng
,
R.
,
1992
, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Symp. (Int.) Combust.
,
24
(1), pp.
511
518
. 10.1016/S0082-0784(06)80065-2
12.
Littlejohn
,
D.
, and
Cheng
,
R.
,
2007
, “
Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
,
31
(2), pp.
3155
3162
.10.1016/j.proci.2006.07.146
13.
Cheng
,
R.
,
Yegian
,
D.
,
Miyasato
,
M.
,
Samuelsen
,
G.
,
Benson
,
C.
,
Pellizzari
,
R.
, and
Loftus
,
P.
,
2000
, “
Scaling and Development of Low-Swirl Burners for Low-Emission Furnaces and Boilers
,”
Proc. Combust. Inst.
,
28
, pp.
1305
1313
.10.1016/S0082-0784(00)80344-6
14.
Smith
,
K.
,
Therkelsen
,
P.
,
Littlejohn
,
D.
,
Ali
,
S.
, and
Cheng
,
R.
,
2010
, “
Conceptual Studies of Fuel-Flexible Low Swirl Combustion Systems for the Gas Turbine in Clean Coal Powerplants
,”
ASME
Paper No. GT2010-23506. 10.1115/GT2010-23506
15.
Johnson
,
M.
,
Littlejohn
,
D.
,
Nazeer
,
W.
,
Smith
,
K.
, and
Cheng
,
R.
,
2005
, “
A Comparison of the Flow Fields and Emissions of High-Swirl Injectors and Low-Swirl Injectors for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
,
30
, pp.
2867
2874
.10.1016/j.proci.2004.07.040
16.
Nazeer
,
W.
Smith
,
K.
,
Sheppard
,
P.
,
Cheng
,
R.
, and
Littlejohn
,
D.
,
2006
, “
Full Scale Testing of a Low Swirl Fuel Injector Concept for Ultra-Low NOx Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2006-90150. 10.1115/GT2006-90150
17.
Cheng
,
R.
,
Littlejohn
,
D.
,
Strakey
,
P.
, and
Sidwell
,
T.
,
2007
, “
Laboratory Investigations of a Low-Swirl Injector With H2 and CH4 at Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
31
, pp.
3155
3162
.10.1016/j.proci.2006.07.146
18.
Littlejohn
,
D.
,
Cheng
,
R.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2010
, “
Laboratory Investigations of Low-Swirl Injectors Operating With Syngases
,”
ASME J. Eng. Gas Turb. Power
,
132
(1), p.
011502
.10.1115/1.3124662
19.
Cheng
,
R.
, and
Littlejohn
,
D.
,
2008
, “
Laboratory Study of Premixed H2-Air and H2-N2-Air Flames in a Low-Swirl Injector for Ultralow Emissions Gas Turbine
,”
ASME J. Eng. Gas Turb. Power
,
130
(3), p.
031503
.10.1115/1.2836480
20.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng Gas Turb. Power
,
126
(
2
), pp.
276
283
.10.1115/1.1473155
21.
Eichler
,
C.
,
Baumgarther
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turb. Power
,
134
(
1
), p.
011502
.10.1115/1.4004149
22.
Therkelsen
,
P.
,
Werts
,
T.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2009
, “
Analysis of NOX Formation in a Hydrogen Fueled Gas Turbine
,”
ASME J. Eng. Gas Turb. Power
,
131
(
3
), p.
031507
.10.1115/1.3028232
23.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R.
,
2012
, “
Flashback, Turbulent Displacement Flame Speeds, Blow-Out and Emissions Measurements in a Hydrogen and Methane Fired Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME
Paper No. GT2012-68216. 10.1115/GT2012-68216
24.
Beerer
,
D.
,
2013
, “
Combustion Characteristics and Performance of Low-Swirl Injectors With Natural Gas and Alternative Fuels at Elevated Pressures and Temperatures
,” Ph.D. dissertation, Mechanical and Aerospace Dept., University of California, Irvine, CA.
25.
Therkelsen
,
P.
,
Littlejohn
,
D.
, and
Cheng
,
R.
,
2012
, “
Parametric Study of Low-Swirl Injector Geometry on its Operability
,”
ASME
Paper No. GT2012-68436. 10.1115/GT2012-68436
26.
Therkelsen
,
P.
,
Littlejohn
,
D.
,
Cheng
,
R.
,
Portillo
,
J.
, and
Martin
,
S.
,
2010
, “
Effect of Combustor Inlet Geometry on Acoustic Signature and Flow Field Behavior of the Low-Swirl Injector
,”
ASME
Paper No. GT2010-23498. 10.1115/GT2010-23498
27.
Davis
,
D.
,
Therkelsen
,
P.
,
Littlejohn
,
D.
, and
Cheng
,
R.
,
2013
, “
Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Flames in a Model Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3135
3143
.10.1016/j.proci.2012.05.050
28.
Noble
,
D.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
,
2006
, “
Syngas Mixture Composition Effects Upon Flashback and Blow Out
,”
ASME
Paper No. GT2006-90470. 10.1115/GT2006-90470
29.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
,
2003
, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
ASME J. Eng. Gas Turb. Power
,
125
, pp.
693
700
.10.1115/1.1582498
30.
Eggenspieler
,
G.
,
Strakey
,
P.
, and
Sidwell
,
T.
,
2008
, “
Experimental and Numerical Study of Flashback in the SimVal Combustion Chamber
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
AIAA
Paper No. 2008-1025. 10.2514/6.2008-1025
31.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2010
, “
Flashback Propensity of Syngas Flames at High Pressure: Diagnostics and Control
,”
ASME
Paper No. GT2010-23456. 10.1115/GT2010-23456
32.
Cheng
,
R.
,
1984
, “
Conditional Sampling of Turbulence Intensities and Reynolds Stresses in Premixed Turbulent Flames
,”
Combust. Sci. Tech.
,
41
, pp.
109
142
.10.1080/00102208408923826
You do not currently have access to this content.