In the present work, a semidetailed combustion mechanism for biodiesel fuel was validated against the measured autoignition delay times and subsequently implemented in the fortÉ cfd engine simulation package (Reaction Design Inc., 2010, “fortÉ, FOR-UG-40102-1009-UG-1b,” Reaction Design Inc., San Diego, CA) to investigate the spray characteristics (e.g., the liquid penetration and flame lift-off distances of rapeseed oil methyl ester (RME) fuel in a constant-volume combustion chamber). The modeling results were compared with the experimental data. Engine simulations were performed for a Volvo D12C heavy-duty diesel engine fueled by RME on a 72 deg sector mesh. Predictions were validated against measured in-cylinder parameters and exhaust emission concentrations. The semidetailed mechanism was shown to be an efficient and accurate representation of actual biodiesel combustion phases. Meanwhile, as a comparative study, the simulations based on a detailed diesel oil surrogate mechanism were performed for diesel oil under the same conditions.

References

1.
Westbrook
,
C. K.
,
Naik
,
C. V.
,
Herbinet
,
O.
,
Pitz
,
W. J.
,
Mehl
,
M.
,
Sarathy
,
S. M.
, and
Curran
,
H. J.
,
2010
, “
Detailed Chemical Kinetic Reaction Mechanisms for Soy and Rapeseed Biodiesel Fuels
,”
Combust. Flame
,
158
(
4
), pp.
742
755
.10.1016/j.combustflame.2010.10.020
2.
Naik
,
C. V.
,
Westbrook
,
C. K.
,
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Mehl
,
M.
,
2011
, “
Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
383
389
.10.1016/j.proci.2010.05.007
3.
Yang
,
J.
,
Johansson
,
M.
,
Naik
,
C. V.
,
Puduppakkam
,
K.
,
Golovitchev
,
V. I.
, and
Meeks
,
E.
,
2012
, “
3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism
,”
SAE
Technical Paper No. 2012-01-0151.10.4271/2012-01-0151
4.
Yang
,
J.
,
Naik
,
C. V.
,
Golovitchev
,
V. I.
, and
Meeks
,
E.
,
2012
, “
Kinetic Study of Methyl Oleate Oxidation Using a Semi-Detailed Mechanism
,” Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA 2012), Fukuoka, Japan, July 23–26, Paper No. 2012 FL1-1, pp.
299
304
.
5.
Gerpen
,
J. V.
,
Shanks
,
B.
,
Pruszko
,
R.
,
Clements
,
D.
, and
Knothe
,
G.
,
2004
, “
Biodiesel Production Technology
,” National Renewable Energy Laboratory, Golden, CO, Subcontractor Report No. NREL/SR-510-36244.
6.
Knothe
,
G.
,
2008
, “
Designer Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
,”
Energy Fuels
,
22
, pp.
1358
1364
.10.1021/ef700639e
7.
Reaction Design Inc.
,
2010
, “
chemkin-pro, MFC-GS-50-1012-UG-1
,” Reaction Design Inc., San Diego, CA.
8.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
, pp.
421
433
.10.1016/0010-2180(93)90142-P
9.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
,
1996
, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixture Under Engine Conditions
,”
Proc. Combust. Inst.
,
26
, pp.
781
789
.10.1016/S0082-0784(96)80287-6
10.
Wang
,
W.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
A Shock Tube Study of Methyl Decanoate Autoignition at Elevated Pressures
,”
Combust. Flame
,
159
, pp.
476
481
.10.1016/j.combustflame.2011.07.019
11.
Liang
,
L.
,
Naik
,
C.
,
Puduppakkam
,
K.
,
Wang
,
C.
,
Modak
,
E.
,
Meeks
,
E.
,
Ge.
,
H.-W.
,
Reitz
,
R.
, and
Rutland
,
C.
,
2010
, “
Efficient Simulation of Diesel Engine Combustion Using Realistic Chemical Kinetics in CFD
,”
SAE
Technical Paper No. 2010-01-0178.10.4271/2010-01-0178
12.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k- Models
,”
Comb. Sci. Tech.
,
106
, pp.
267
295
.10.1080/00102209508907782
13.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1986
, “
Effect of Drop Breakup on Fuel Sprays
,”
SAE
Technical Paper No. 860469.10.4271/860469
14.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin–Helmholtz/Rayleigh–Taylor Hybrid Model
,”
Atomization Sprays
,
9
, pp.
623
650
.
15.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S. W.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,”
SAE
Technical Paper No. 2008-01-0970.10.4271/2008-01-0970
16.
Liang
,
L.
,
Stevens
,
J. G.
, and
Farrell
,
J. T.
,
2009
, “
A Dynamic Adaptive Chemistry Scheme for Reactive Flow Computations
,”
Proc. Combust. Inst.
,
32
, pp.
527
534
.10.1016/j.proci.2008.05.073
17.
Liang
,
L.
,
Stevens
,
J. G.
, and
Farrell
,
J. T.
,
2009
, “
A Dynamic Multi-Zone Partitioning Scheme for Solving Detailed Chemical Kinetics in Reactive Flow Computations
,”
Combust. Sci. Technol.
,
181
(
11
), pp.
1345
1371
.10.1080/00102200903190836
18.
Reaction Design Inc.
,
2010
, “
fortÉ, FOR-UG-40102-1009-UG-1b
,” Reaction Design Inc., San Diego, CA.
19.
Munnannur
,
A.
, and
Reitz
,
R. D.
,
2009
, “
A Comprehensive Collision Model for Multi-Dimensional Engine Spray Computations
,”
Atomization Sprays
,
19
(
7
), pp.
597
619
.10.1615/AtomizSpr.v19.i7.10
20.
Naber
,
J.
, and
Reitz
,
R. D.
,
1988
, “
Modeling Engine Spray/Wall Impingement
,”
SAE
Technical Paper No. 880107.10.4271/880107
21.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulence Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
22.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
, pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
23.
Kong
,
S. C.
, and
Reitz
,
R. D.
,
2002
, “
Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects
,”
Trans. ASME
,
124
, pp.
702
707
.10.1115/1.1413766
24.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in DI Diesel Engines
,”
SAE
Technical Paper No. 760129.10.4271/760129
25.
Nagle
,
J.
, and
Strickland-Constable
,
R. F.
,
1962
, “
Oxidation of Carbon Between 1000-2000 °C
,”
Proceedings of the Fifth Carbon Conference
, Vol.
1
,
Pergamon
,
New York
, pp.
154
164
.
26.
Zel'dovich
,
Ya. B.
,
Sadovnikov
,
P. Ya.
, and
Frank-Kamenetskii
,
D. A.
,
1947
,
Oxidation of Nitrogen in Combustion
,
Academy of Sciences of the USSR
,
Moscow
.
27.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Frank
,
P.
,
Hayman
,
G.
,
Just
,
Th.
,
Kerr
,
J. A.
,
Murrells
,
T.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1994
, “
Summary Table of Evaluated Kinetic Data for Combustion Modeling
,”
Combust. Flame
,
98
, pp.
59
79
.10.1016/0010-2180(94)90198-8
28.
Daubert
,
T. E.
, and
Danner
,
R. P.
,
1989
,
Physical and Thermodynamic Properties of Pure Chemicals, Part 4
,
Taylor & Francis
,
London
.
29.
Burcat
,
A.
,
2007
, “Ideal Gas Thermodynamic Data in Polynomial Form for Combustion and Air Pollution Use,” ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/
30.
Park
,
S. H.
,
Yoon
,
S. H.
, and
Kim
,
S. J.
,
2009
, “
Effect of the Spray-Atomization Characteristics on the Nano-Size Particle Exhaust Emissions Characteristics Using Biodiesel-Bioethanol Blended Fuels in a DI Diesel Engine With Common Rail Injection System
,”
ASME
Paper No. ICES2009-76062, pp.
67
76
.10.1115/ICES2009-76062
31.
Gao
,
Y.
,
Deng
,
J.
,
Li
,
C.
,
Dang
,
F.
,
Liao
,
Z.
,
Wu
,
Z.
, and
Li
,
L.
,
2009
, “
Experimental Study of the Spray Characteristics of Biodiesel Based on Inedible Oil
,”
J. Biotechnol. Adv.
,
27
(
5
), pp.
616
624
.10.1016/j.biotechadv.2009.04.022
32.
Allocca
,
L.
,
Montanaro
,
A.
,
Cipolla
,
G.
, and
Vassallo
,
A.
,
2009
, “
Spatial-Temporal Characterization of Alternative Fuel Sprays From a Second-Generation Common-Rail Fuel Injection System for Euro4 Passenger Car Application
,”
SAE
Paper No. 2009-01-1856.10.4271/2009-01-1856
33.
Ochoterena
,
R.
,
Larsson
,
M.
,
Andersson
,
S.
, and
Denbratt
,
I.
,
2008
, “
Optical Studies of Spray Development and Combustion Characterization of Oxygenated and Fischer-Tropsch Fuels
,”
SAE
Paper No. 2008-01-1393.10.4271/2008-01-1393
34.
Wang
,
X.
,
Huang
,
Z.
,
Kuti
,
O. A.
,
Zhang
,
W.
, and
Nishida
,
K.
,
2011
, “
An Experimental Investigation on Spray, Ignition and Combustion Characteristics of Biodiesels
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2071
2077
.10.1016/j.proci.2010.07.037
35.
Larsson
,
M.
, and
Denbratt
,
I.
,
2007
, “
Combustion of Fischer-Tropsch, RME and Conventional Fuels in a Heavy–Duty Diesel Engine
,”
SAE
Paper No. 2007-01-4009.10.4271/2007-01-4009
36.
Hawkes
,
E. R.
,
2011
, “
Model Comparisons: Baseline n-Heptane Condition
,”
First International Workshop of the Engine Combustion Network Proceeding
(ECN1), Ventura, CA, May 13–14, p.
22
.
37.
AVL
,
2002
, “
Model 415S Smoke Meter Product Literature
,” AVL List GmbH, Graz, Austria.
38.
Buchholz
,
B. A.
,
Mueller
,
C. J.
,
Upatnieks
,
A.
,
Martin
,
G. C.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions From a DI Diesel Engine
,”
SAE
Paper No. 2004-01-1849.10.4271/2004-01-1849
39.
Zeldovich
,
Ya.
B.
,
Barenblatt
,
G.
I
.
,
Librovich
, V
. B.
, and
Makhviladze
,
G. M.
,
1985
,
The Mathematical Theory of Combustion and Explosion
,
Consultants Bureau
,
New York
.
40.
U.S. Environmental Protection Agency
,
2002
, “
A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions
,” EPA Report No. EPA420-P-02001.
41.
Yang
,
J.
,
Golovitchev
,
V. I.
,
Redon
,
P.
, and
Javier
,
L. J.
,
2012
, “
Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion
,”
Int. J. Chem. Eng.
,
2012
, p.
898742
.10.1155/2012/898742
You do not currently have access to this content.