The influence of changes in fuel composition and heating value on the performance of an industrial gas turbine combustor was investigated. The combustor tested was a single cannular combustor for Siemens SGT-400 13.4 MW dry low emission engine. Ignition, engine starting, emissions, combustion dynamics, and flash back through burner metal temperature monitoring were among the parameters investigated to evaluate the impact of fuel flexibility on combustor performance. Lean ignition and extinction limits were measured for three fuels with different heat values in term of Wobbe Index (WI): 25, 28.9, and 45 MJ/Sm3 (natural gas). The test results show that the air fuel ratio at lean ignition/extinction limits decreases and the margin between the two limits tends to be smaller as fuel heat value decreases. Engine start tests were also performed with a lower heating value fuel and results were found to be comparable to those for engine starting with natural gas. The combustor was further tested in a high pressure air facility at real engine operating conditions with different fuels covering WIs from 17.5 to 70 MJ/Sm3. The variation in fuel composition and heating value was achieved in a gas mixing plant by blending natural gas with CO2, CO, N2, and H2 (for the fuel with WI lower than natural gas) and C3H8 (for the fuel with WI higher than natural gas). Test results show that a benefit in NOx reduction can be seen for the lower WI fuels without H2 presence in the fuel and there are no adverse impacts on combustor performance except for the requirement of higher fuel supply pressure, however, this can be easily resolved by minor modification through the fuel injection design. Test results for the H2 enriched and higher WI fuels show that NOx, combustion dynamics and flash back have been adversely affected and major change in burner design is required. For the H2 enriched fuel, the effect of CO and H2 on combustor performance was also investigated for the fuels having a fixed WI of 29 MJ/Sm3. It is found that H2 dominates the adverse impact on combustor performance. The chemical kinetic study shows that H2 has significant effect on flame speed change and CO has significant effect on flame temperature change. Although the tests were performed on the Siemens SGT-400 combustion system, the results provide general guidance for the challenge of industrial gas turbine burner design for fuel flexibility.

References

References
1.
Asti
,
A.
,
Stewart
,
J.F.
,
Forte
,
A.
,
Yilmaz
,
E.
, and
D'Ercole
,
M.
,
2008
, “
Enlarging the Fuel Flexibility Boundaries: Theoretical and Experimental Application to a New Heavy-Duty Gas Turbine (MS5002E)
,”
ASME
Paper No. GT2008-50773.10.1115/GT2008-50773
2.
Carrera
,
A. M.
,
Andersson
,
M.
, and
Nasvall
,
H.
,
2011
, “
Experimental Investigation of the 4th Generation DLE Burner Concept: Emissions and Fuel Flexibility Performance at Atmospheric Conditions
,”
ASME
Paper No. GT2011-46387.10.1115/GT2011-46387
3.
Campbell
,
A.
,
Goldmeer
,
J.
,
Healy
,
T.
,
Washman
,
R.
,
Moliere
,
M.
, and
Citeno
,
J.
,
2008
, “
Heavy Duty Gas Turbines Fuel Flexibility
,”
ASME
Paper No. GT2008-51368.10.1115/GT2011-46387
4.
Blouch
,
J.
,
Li
,
H.
,
Mueller
,
M.
, and
Hook
,
R.
,
2011
, “
Fuel Flexibility in LM2500 and LM6000 Dry Low Emission Engines
,”
ASME
Paper No. GT2011-45387.10.1115/GT2011-45387
5.
Singh
,
K.
,
Varatharajan
,
B.
,
Yilmaz
,
E.
,
Han
,
F.
, and
Kim
,
K.
,
2008
, “
Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor
,”
ASME
Paper No. GT2008-51343.10.1115/GT2008-51343
6.
Liu
,
K.
,
Alexander
,
V.
,
Sanderson
,
V.
, and
Bulat
,
G.
,
2012
, “
Extension of Fuel Flexibility in the Siemens Dry Low Emissions SGT-300-1S to Cover a Wobbe Index Range of 15 to 49 MJ/Sm3
,”
ASME
Paper No. GT2012-68838.10.1115/GT2012-68838
7.
Liu
,
K.
, and
Sanderson
,
V.
,
2013
, “
The Influence of Changes in Fuel Calorific Value to Combustion Performance for Siemens SGT-300 Dry Low Emission Combustion System
,”
Fuel
,
103
, pp. 239–246.10.1016/j.fuel.2012.07.068
8.
Andersson
,
M.
,
Larsson
,
A.
, and
Carrera
,
A.
,
2011
, “
Pentane Rich Fuels for Standard Siemens DLE Gas Turbines
,”
ASME
Paper No. GT2011-46099.10.1115/GT2011-46099
9.
Rokke
,
P. E.
, and
Hustad
,
J. E.
,
2005
, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions: Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
(
4
), pp.
167
173
.10.5541/ijot.158
10.
Valler
,
K.
,
Wopera
,
A.
,
Palotas
,
A. B.
, and
Whitty
,
K. J.
,
2009
, “
NOx Formation by Synthesis Gas—Natural Gas Co-Firing
,”
4th European Combustion Meeting
(ECM
2009
), Vienna, Austria, April 14–17.
11.
Elkady
,
A. M.
,
Brand
,
A. R.
,
Vandervort
,
C. L.
, and
Evulet
,
A. T.
,
2011
, “
Exhaust Gas Recirculation Performance in Dry Low Emissions Combustors
,”
ASME
Paper No. GT2011-46482.10.1115/GT2011-46482
12.
Bulat
,
G.
,
Liu
,
K.
,
Brickwood
,
G.
,
Sanderson
,
V.
, and
Igoe
B.
,
2011
, “
Intelligent Operation of Siemens (SGT-300) DLE Gas Turbine Combustion System Over an Extended Fuel Range With Low Emissions
,”
ASME
Paper No. GT2011-46103.10.1115/GT2011-46103
13.
Cocchi
,
S.
,
Provenzale
,
M.
, and
Ceccherini
,
G.
,
2007
, “
Fuel Flexibility Test Campaign on a 10 MW Class Gas Turbine Equipped with a Dry-Low-NOx Combustion System
,”
ASME
Paper No. GT2007-27154.10.1115/GT2007-27154
14.
Ren
,
J. Y.
,
Egolfopoulos
,
F. N.
,
Mak
,
H.
, and
Tsotsis
,
T. T.
,
2002
, “
NOx Emission Control of Lean Methane-Air Combustion With Addition of Methane Reforming Products
,”
Combust. Sci. Technol.
,
174
(
4
), pp.
181
205
.10.1080/713713016
15.
Lafay
,
Y.
,
Renou
,
B.
,
Cabot
,
G.
, and
Boukhalfa
,
M.
,
2007
, “
Experimental Determination of Laminar Flame Thickness for CO2 and H2 Diluted Methane/Air Flames
,”
3rd European Combustion Meeting
(ECM 2007), Crete, Greece, April 11–13.
16.
Cohe
,
C.
,
Chauveau
,
C.
, and
Gokalp
,
I.
,
2009
, “
Addition Effect in High Pressure CH4-Air Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
32
, pp.
1803
1810
.10.1016/j.proci.2008.06.181
17.
Ren
,
J. Y.
,
Qin
,
W.
,
Egolfopoulos
,
F. N.
,
Mak
,
H.
, and
Tsotsis
,
T. T.
,
2001
, “
Methane Reforming and Its Potential Effect on the Efficiency and Pollutant Emissions of Lean Methane-Air Combustion
,”
Chem. Eng. Sci.
,
56
, pp.
1541
1549
.10.1016/S0009-2509(00)00381-X
18.
Qin
,
Q.
,
Egolfopoulos
,
F. N.
, and
Tsotsis
,
T. T.
,
2001
, “
Fundamental and Environmental Aspects of Landfill Gas Utilization for Power Generation
,”
Chem. Eng. Sci.
,
82
, pp.
157
172
.10.1016/S1385-8947(00)00366-1
19.
Kishore
,
V. R.
,
Duan
,
N.
,
Ravi
,
M. R.
, and
Ray
,
A.
,
2008
, “
Measurement of Adiabatic Burning Velocity in Natural Gas-Like Mixtures
,”
Exp. Therm. Fluid Sci.
,
33
, pp.
10
16
.10.1016/j.expthermflusci.2008.06.001
20.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
, pp.
495
497
.10.1016/S0010-2180(03)00019-1
21.
Glarborg
,
P.
, and
Bentzen
,
L. L. B.
,
2008
Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane
,”
Energy and Fuel
,
22
, pp.
291
296
.10.1021/ef7005854
22.
Fackler
,
K. B.
,
Karalus
,
M. F.
,
Novosselov
,
I. V.
,
Kramlich
,
J. C.
, and
Malte
,
P. C.
,
2011
, “
Experimental and Numerical Study of NOx Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2
,”
ASME
Paper No. GT2011-45090.10.1115/GT2011-45090
23.
Dobbeling
,
K.
,
Meeuwissen
,
T.
,
Zajadatz
,
M.
, and
Flohr
,
P.
,
2008
, “
Fuel Flexibility of the Alstom GT132E Medium Sized Gas Turbine
,”
ASME
Paper No. GT2008-50950.10.1115/GT2008-50950
24.
Liu
,
K.
,
Wood
,
J. P.
,
Buchanan
,
E.
,
Martin
,
P.
, and
Sanderson
,
V. E.
,
2010
, “
Biodiesel as an Alternative Fuel in Siemens Dry Low Emissions Combustors: Atmospheric and High Pressure Rig Testing
,”
ASME J. Eng. Gas Turbines Power
,
132
(1), p.
011501
.10.1115/1.3204617
25.
Thiruchengode
,
M.
,
Nair
,
S.
,
Prakash
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
,
Jagoda
,
J.
,
Seitzman
,
J.
, and
Zinn
,
B.
, “
An Active Control System for LBO Margin Reduction in Turbine Engines
,” AIAA 41st Aerospace Science Meeting and Exhibit, Reno, NV, January 6–9,
AIAA
Paper No. 2003-1008.10.2514/6.2003-1008
26.
Lafay
,
Y.
,
Cabot
,
G.
, and
Boukhalfa
,
A.
,
2006
, “
Experimental Study of Biogas Combustion Using a Gas Turbine Configuration
,”
13th Int. Symp. on Application of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, June 26–29.
27.
Lin
,
Y. C.
,
Matuszewski
,
M.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2011
, “
NOx Emission for Combustion Systems Relevant to Zero Emissions Power Concepts
,”
European Combustion Meeting 2011, Cardiff, UK, June 28–July 1
.
28.
Guo
,
H.
,
Smallwood
,
G. J.
,
Liu
,
F.
,
Ju.
,
Y.
, and
Gülder
,
Ö.
,
2005
, “
The Effect of Hydrogen Addition on Flammability Limit and NOx Emission in Ultra-Lean Counterflow CH4/Air Premixed Flame
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
303
311
.10.1016/j.proci.2004.08.177
29.
Dam
,
B.
,
Corona
,
G.
,
Hayder
,
M.
, and
Choudhuri
,
A.
,
2011
, “
Effects of Syngas Composition on Combustion Induced Vortex Breakdown (CIVB) Flashback in a Swirl Stabilized Combustor
,”
Fuel
,
90
, pp.
3274
3284
.10.1016/j.fuel.2011.06.024
30.
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Gall
,
H. L.
,
Bounaceur
,
R.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Konnov
,
A. A.
,
2011
, “
Laminar Flame Velocity of Components of Natural Gas
,”
ASME
Paper No. GT2011-46312.10.1115/GT2011-46312
31.
Kido
,
H.
,
Nakahara
,
M.
,
Nakashima
,
K.
, and
Hashimoto
,
J.
,
2002
, “
Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity
,”
Proc. Combust. Inst.
,
29
, pp.
1855
1861
.10.1016/S1540-7489(02)80225-5
32.
Kowkabie
,
M.
,
Noden
,
R.
, and
De Pietro
,
S.
,
1997
, “
The Development of a Dry Low NOx Combustion System for the EGT Typhoon
,”
ASME
Paper No. 97-GT-60.
33.
34.
Hu
,
E.
,
Huang
,
Z.
,
Zheng
,
J.
,
Li
,
Q.
, and
He
,
J.
,
2009
, “
Numerical Study on Laminar Burning Velocity and NO Formation of Premixed Methane-Hydrogen-Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6545
7557
.10.1016/j.ijhydene.2009.05.080
35.
Cheng
,
T. S.
,
Chang
,
Y. C.
,
Chao
,
Y. C.
,
Chen
,
G. B.
,
Li
,
Y. H.
, and
Wu
,
C. Y.
,
2011
, “
An Experimental and Numerical Study on Characteristics of Laminar Premixed H2/CO/CH4/Air Flames
,”
Int. J. Hydrogen Energy
,
36
, pp.
13207
13217
.10.1016/j.ijhydene.2011.07.077
36.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2011
, “
Turbulent Consumption Speed Scaling of H2/CO Blends
,”
ASME
Paper No. GT2011-45401.10.1115/GT2011-45401
You do not currently have access to this content.