Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatiotemporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The equivalence ratio fluctuations in the reaction zone are measured spatially and temporally resolved using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that, despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.

References

References
1.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
2.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
, (Progress in Astronautics and Aeronautics, Vol. 210), American Institute of Aeronautics and Astronautics, Reston, VA, pp.
445
480
.
3.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
4.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Sym. (Int.) Combust.
,
27
(2), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
5.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
Proceedings of the ASME International Gas Turbine and Aeroengine Congress and Exhibition
, Indianapolis, IN, June 7–10,
ASME
Paper No. GT-1999-0132.
6.
Huber
,
A.
, and
Polifke
,
W.
,
2008
, “
Impact of Fuel Supply Impedance on Combustion Stability of Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2008
, Berlin, June 9–13,
ASME
Paper No. GT2008-51193.10.1115/GT2008-51993
7.
Huber
,
A.
,
2009
, “
Impact of Fuel Supply Impedance and Fuel Staging on Gas Turbine Combustion Stability
,” Ph.D. thesis, Technische Universität München, Lehrstuhl für Thermodynamik, Munich, Germany.
8.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
9.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part II: Identification and Interpretation of CFD Data
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
229
249
.10.1260/175682709788707440
10.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Reconstruction of Heat Release Response of Partially Premixed Flames
,”
Combust. Sci. Technol.
,
183
(
2
), pp.
122
137
.10.1080/00102202.2010.503205
11.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
12.
Lacarelle
,
A.
,
Moeck
,
J.
, and
Paschereit
,
C.
,
2009
, “
Dynamic Mixing Model of a Premixed Combustor and Validation With Flame Response Measurements
,”
Proceedings of the 47th AIAA Aerospace Sciences Meeting
, Orlando, FL, January 5–8,
AIAA
Paper No. 2009-986.10.2514/6.2009-986
13.
Lacarelle
,
A.
,
Göke
,
S.
, and
Paschereit
,
C. O.
,
2010
, “
A Quantitative Link Between Cold-Flow Scalar Unmixedness and NOx Emissions in a Conical Premixed Burner
,”
Proceedings of the ASME Turbo Expo 2010
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-23132.10.1115/GT2010-23132
14.
Girimaji
,
S.
,
1993
, “
A Study of Multiscalar Mixing
,”
Phys. Fluids A
,
5
(
7
), pp.
1802
1809
.10.1063/1.858855
15.
Clark
,
T. P.
, and
Bittker
,
D. A.
,
1954
, “
A Study of the Radiation From Laminar and Turbulent Open Propane-Air Flames as a Function of Flame Area, Equivalence Ratio, and Fuel Flow Rate
,”
NACA Report No. E54F29
.
16.
Clark
,
T. P.
,
1958
, “
Studies of OH, CO, CH and C2 Radiation From Laminar and Turbulent Propane-Air and Ethylene-Air Flames
,” NACA Technical Report No. 4266.
17.
Lee
,
J.
, and
Santavicca
,
D.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.10.2514/2.6191
18.
Lauer
,
M.
,
2011
,. “
Determination of the Heat Release Distribution in Turbulent Flames by Chemiluminescence Imaging
,” Ph.D. thesis, Technische Universität München, Lehrstuhl für Thermodynamik, Munich, Germany.
19.
Higgins
,
B.
,
McQuay
,
M. Q.
,
Lacas
,
F.
,
Rolon
,
J. C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
20.
Guyot
,
D.
, and
Paschereit
,
C. O.
,
2009
, “
Optical Transfer Function Measurements for a Swirl Burner at Atmospheric Pressure
,”
Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Denver, CO, August 2–5,
AIAA
Paper No. 2009-5413.10.2514/6.2009-5413
21.
Bobusch
,
B. C.
,
Moeck
,
J. P.
,
Sadig
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
Thermoacoustic Stability Analysis of a Kerosene-Fueled Lean Direct Injection Combustor Employing Acoustically and Optically Measured Transfer Matrices
,”
Proceedings of the ASME Turbo Expo 2012
, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-69034.10.1115/GT2012-69034
22.
Schuermans
,
B.
,
Guethe
,
F.
,
Pennell
,
D.
,
Guyot
,
D.
,
Paschereit
,
C.
,
2010
, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
,”
ASME J. Eng. Gas Turbines Power
,
132
(11), p.
111503
.10.1115/1.4000854
23.
Hardalupas
,
Y.
,
Orain
,
M.
,
Spanoutsos
,
C.
,
Taylor
,
A.
,
Olofsson
,
J.
,
Seyfried
,
H.
,
Richter
,
M.
,
Hult
,
J.
,
Alden
,
M.
, and
Hermann
,
F.
,
2004
, “
Chemiluminescence Sensor for Local Equivalence Ratio of Reacting Mixtures of Fuel and Air (FLAMESEEK)
,”
Appl. Therm. Eng.
,
24
(
11–12
), pp.
1619
1632
.10.1016/j.applthermaleng.2003.10.028
24.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.10.1016/j.combustflame.2004.08.003
25.
Guyot
,
D.
,
Guethe
,
F.
,
Schuermans
,
B.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2010
, “
CH*/OH* Chemiluminescence Response of an Atmospheric Premixed Flame Under Varying Operating Conditions
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea and Air
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-23135.10.1115/GT2010-23135
26.
Cheng
,
T. S.
,
Wu
,
C.-Y.
,
Li
,
Y.-H.
, and
Chao
,
Y.-C.
,
2006
, “
Chemiluminescence Measurements of Local Equivalence Ratio in a Partially Premixed Flame
,”
Combust. Sci. Technol.
,
178
(
10–11
), pp.
1821
1841
.10.1080/00102200600790755
27.
Panoutsos
,
C.
,
Hardalupas
,
Y.
, and
Taylor
,
A.
,
2009
, “
Numerical Evaluation of Equivalence Ratio Measurement Using OH*- and CH*-Chemiluminescence in Premixed and Non-Premixed Methane–Air Flames
,”
Combust. Flame
,
156
(
2
), pp.
273
291
.10.1016/j.combustflame.2008.11.008
28.
Taylor
,
G. I.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. Lond. A
,
219
(
1137
), pp.
186
203
.10.1098/rspa.1953.0139
29.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
30.
Göckeler
,
K.
,
Terhaar
,
S.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2011
, “
Residence Time Distribution in a Swirl-Stabilized Combustor at Cold Conditions
,”
Proceedings of the 41st AIAA Fluid Dynamics Conference and Exhibit
, Honolulu, HI, June 27–30,
AIAA
Paper No. 2011-3585.10.2514/6.2011-3585
31.
Scarinci
,
T.
,
2005
, “
Combustion Instability and Its Passive Control: Rolls-Royce Aeroderivative Engine Experience
,”
Combustion Instabilities in Gas Turbine Engines
, (Progress in Astronautics and Aeronautics, Vol. 210),
T. C.
Lieuwen
and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
65
88
.
You do not currently have access to this content.