Organic Rankine cycle (ORC) power systems are rapidly diffusing as a technology for the conversion of thermal energy sources in the small-to-medium power range, e.g., from 150 kWe up to several MWe. The most critical component is arguably the expander, especially if the power capacity is small or very small, as it is the case for innovative high-potential applications such as waste heat recovery from truck engines, or distributed conversion of concentrated solar radiation. In these so-called high-temperature applications, the expansion ratio is very high; therefore, turbines are the expanders of choice. Recently, multistage radial-outflow turbines (ROT), a nonconventional turbine configuration, have been studied, and first commercial implementations in the MWe power range have been successful. The objective of this work is the evaluation of the radial-outflow arrangement for the turbine of high-temperature mini-ORC power systems, with power output of the order of 10 kWe. To this end, a method for the preliminary fluid-dynamic design is presented. It consists of an automated optimization procedure based on an in-house mean-line code for the one-dimensional preliminary design and efficiency estimation of turbines. It is first shown that usually adopted simplified design procedures, such as that of the so-called repeating-stage, cannot be extended to minicentrifugal turbines. The novel methodology is applied to the exemplary case of the 10 kWe turbine of an ORC power system for truck engine heat recovery documented in the literature. The expansion ratio is 45. The preliminary fluid-dynamic design of two miniturbines is presented, namely, a five-stage transonic and a three-stage slightly supersonic turbine. The outcome of the preliminary design leads to two turbine configurations whose fluid-dynamic efficiency exceeds 79% and 77%, respectively. The speed of revolution is around 12,400 and 15,400 RPM for the five-stage and the three-stage machine, respectively. These results show that the ROT configuration may allow for compact and efficient expanders for low power output applications.

References

References
1.
Tabor
,
H.
, and
Bronicki
,
L.
,
1964
, “
Establishing Criteria for Fluids for Small Vapor Turbines
,” SAE National Transportation, Powerplant, and Fuels and Lubricants Meeting, Baltimore, MD, October 19–23,
SAE
Technical Paper No. 640823.10.4271/640823
2.
Angelino
,
G.
,
Gaia
,
M.
, and
Macchi
,
E.
,
1984
, “
A Review of Italian Activity in the Field of Organic Rankine Cycles
,”
VDI Berichte—Proceedings of the International VDI Seminar
, Vol. 539, VDI Verlag, Sint-Genesius-Rode, Belgium, pp.
465
482
.
3.
D’Amelio
,
L.
,
1935
, “
Impiego di vapori ad alto peso molecolare in piccole turbine e utilizzazione del calore solare per energia motrice (On the Use of High Molecular Weight Vapors in Small Turbines and Solar Energy Conversion Into Mechanical Work)
,” Industria Napoletana Arti Grafiche (in Italian).
4.
Verneau
,
A.
,
1987
, “
Small High Pressure Ratio Turbines
,”
Supersonic Turbines for Organic Rankine Cycles From 3 to 1300 kW (Lecture Series 1987-07)
, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
5.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
, V
.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.10.1016/j.rser.2013.01.028
6.
Badr
,
O.
,
Naik
,
S.
,
O’Callaghan
,
P.
, and
Probert
,
S.
,
1991
, “
Expansion Machine for a Low Power-Output Steam Rankine–Cycle Engine
,”
Appl. Energy
,
39
(
2
), pp.
93
116
.10.1016/0306-2619(91)90024-R
7.
Badr
,
O.
,
O’Callaghan
,
P.
, and
Probert
,
S.
,
1984
, “
Performances of Rankine-Cycle Engines as Functions of Their Expanders’ Efficiencies
,”
Appl. Energy
,
18
(
1
), pp.
15
27
.10.1016/0306-2619(84)90042-4
8.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
, V
.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for Organic Rankine Cycle Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
.10.1115/1.4023122
9.
Macchi
,
E.
,
1977
, “
Design Criteria for Turbines Operating With Fluids Having a Low Speed of Sound
,”
Closed-Cycle Gas Turbines (Lecture Series 100)
, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
10.
Energy Technology Inc.
,
1979
,
“Study of Advanced Radial Outflow Turbine for Solar Steam Rankine Engines
,”
National Aeronautics and Space Administration/Lewis Research Center
, Cleveland, OH.
11.
Coomes
,
E.
,
Dodge
,
R.
,
Wilson
,
D.
, and
McCabe
,
S.
,
1986
, “
Design of a High-Power-Density Ljüngstrom Turbine Using Potassium as a Working Fluid
,”
21st Intersociety Energy Conversion Engineering Conference
, Vol. 3, San Diego, CA, August 25–29.
12.
Mobarak
,
A.
,
Rafat
,
N.
, and
Saad
,
M.
,
1980
, “
Turbine Selection for Small Capacity Solar Power Generation
,”
Desalination
,
3
, pp.
1351
1367
.
13.
D’Amelio
,
C.
,
Blasi
,
M.
, and
Tuccillo
,
R.
,
1982
, “
Study of Low Power Engines: Thermodynamic Conversion of Solar Energy
,”
ISES Solar World Forum
, Brighton, UK, August 23–28, Vol. 4, pp.
2983
2992
.
14.
Wilson
,
D.
,
1984
, The Design of High–Efficiency Turbomachinery and Gas Turbines,
MIT Press
,
Cambridge, MA
.
15.
Spadacini
,
C.
,
Centemeri
,
L.
,
Xodo
,
L.
,
Astolfi
,
M.
,
Romano
,
M.
, and
Macchi
,
E.
,
2011
, “
A New Configuration for Organic Rankine Cycles Power Systems
,” International Seminar on ORC Power Systems (ORC 2011), Delft, Netherlands, September 22–23.
16.
Craig
,
H.
, and
Cox
,
H.
,
1971
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.10.1243/PIME_PROC_1970_185_048_02
17.
Colonna
,
P.
,
van der Stelt
,
T. P.
, and
Guardone
,
A.
,
2012
, “
FluidProp (Version 3.0): A Program for the Estimation of Thermophysical Properties of Fluids
,” Delft University of Technology, Delft, Netherlands, http://www.fluidprop.com/
18.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
5th ed.
, Elsevier Butterworth-Heinemann, Burlington, MA.
19.
Sawyer
,
J.
,
1972
,
Gas Turbine Engineering Handbook
,
Gas Turbine Publications
, Stamford, CT.
20.
Zweifel
,
O.
,
1945
, “
The Spacing of Turbo-Machine Blading Especially With Large Angular Deflection
,”
Brown Boveri Rev.
,
32
(1), pp. 436–444.
21.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1957
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” Aeronautical Research Council, London, Technical Report No. R&M 2974.
22.
Traupel
,
W.
,
1977
,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
23.
Coull
,
J.
, and
Hodson
,
H.
,
2013
, “
Blade Loading and Its Application in the Mean-Line Design of Low Pressure Turbines
,”
ASME J. Turbomach.
,
135
(
2
), p.
021032
.10.1115/1.4006588
24.
Macchi
,
E.
,
1985
,
Design Limits: Basic Parameter Selection and Optimization Methods in Turbomachinery Design
,
Vol. 97 Av 2, Martinus Nijhoff Publisher
,
Dordrecht, Netherlands
, pp.
805
828
.
25.
Sandia National Laboratories
,
2012
, “
The Dakota Project—Large Scale Engineering Optimization and Uncertainty Analysis
,” Sandia National Laboratories, Albuquerque, NM, http://dakota.sandia.gov/software.html
26.
Deb
,
K.
,
2001
,
Multi-Objective Optimization
, John Wiley & Sons, Hoboken, NJ.
27.
Cerri
,
G.
,
Battisti
,
L.
, and
Soraperra
,
G.
,
2003
, “
Non-Conventional Turbines for Hydrogen Fueled Power Plants
,”
ASME
Paper No. GT2003-38324.10.1115/GT2003-38324
28.
Lang
,
W.
,
Almbauer
,
R.
, and
Colonna
,
P.
,
2013
, “
Assessment of Waste Heat Recovery for a Heavy-Duty Truck Engine Using An ORC Turbogenerator
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042313
.10.1115/1.4023123
29.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
30.
Baljé
,
O.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines: Part A—Similarity Relations and Design Criteria of Turbines
,”
ASME J. Eng. Gas Turbines Power
,
84
(
1
), pp.
83
102
.10.1115/1.3673386
31.
Baljé
,
O.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines: Part B—Compressor and Pump Performance and Matching of Turbocomponents
,”
ASME J. Eng. Gas Turbines Power
,
84
(
1
), pp.
103
114
.10.1115/1.3673350
32.
Gaetani
,
P.
,
Persico
,
G.
, and
Osnaghi
,
C.
,
2010
, “
Effects of Axial Gap on the Vane-Rotor Interaction in a Low Aspect Ratio Turbine Stage
,”
J. Propul. Power
,
26
(
2
), pp.
325
334
.10.2514/1.37616
33.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
34.
Lozza
,
G.
,
Macchi
,
E.
, and
Perdichizzi
,
A.
,
1986
, “
Investigation on the Efficiency Potential of Small Steam Turbines of Various Configurations
,”
21st Intersociety Energy Conversion Engineering Conference
, San Diego, CA, August 25–29, pp.
1367
1373
.
35.
Eddy
,
J.
, and
Lewis
,
K.
,
2001
, “
Effective Generation of Pareto Sets Using Genetic Programming
,”
ASME Design Engineering Technical Conference
, Pittsburg, PA, September 9–12, Vol. 2, pp.
783
791
.
You do not currently have access to this content.