Cavitation characteristics of oil jet pumps with multiple nozzles were studied using high frequency response pressure transducers with Mobile DTE Light Oil in experiment, which has an environment the same as that in the lubrication system of the steam turbine in a power plant. The influence of working oil pressure, pressure ratio, and area ratio on cavitation characteristics were studied with the area ratio ranging from 4 to 9, and the working oil pressure ranging from 1.8 to 2.8 MPa. Results show that the cavitation erosion on the throat surface is caused by the intense shear layer of high-speed jet in the throat, which leads to the collapse of vortex cavitation bubbles near the throat surface in an oil jet pump with multiple nozzles. What is more, the vortex cavitation is difficult to eradicate in an oil jet pump with multiple nozzles for the lubrication system of a steam turbine. However, there is a working point with low cavitation intensity, which is also the high efficiency point that ensures both relative safety and high efficiency. This study provides quantitative relation for the determination of working oil pressure, area ratio, and pressure ratio of an oil jet pump with multiple nozzles, which is significant for engineering.

Reference

Reference
1.
Cunningham
,
R. G.
,
Hansen
,
A. G.
, and
Na
,
T. Y.
,
1970
, “
Jet Pump Cavitation
,”
ASME J. Basic Eng.
,
92
(3), pp.
483
492
.10.1115/1.3425040
2.
Sanger
,
N. L.
,
1968
,
Cavitating Performance of Two Low-Area-Ratio Water Jet Pumps Having Throat Lengths of 7.25 Diameters
,
National Aeronautics and Space Administration
,
Washington, DC
.
3.
Kudirka
,
A. A.
, and
Decoster
,
M. A.
,
1979
, “
Jet Pump Cavitation With Ambient and High-Temperature Water
,”
ASME J. Fluids Eng.
,
101
(
1
), pp.
93
99
.10.1115/1.3448741
4.
Long
,
X.
,
Yao
,
H.
, and
Zhao
,
J.
,
2009
, “
Investigation on Mechanism of Critical Cavitating Flow in Liquid Jet Pumps Under Operating Limits
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2415
2420
.10.1016/j.ijheatmasstransfer.2008.11.018
5.
Cunningham
,
R. G.
, and
Brown
,
F. B.
,
1970
, “
Oil Jet Pump Cavitation
,”
ASME Cavitation Forum
,
Detroit, MI
, May 24–27, pp.
13
16
.
6.
Martin
,
C. S.
, and
Rao
,
P. V.
,
1984
, “
Application of Signal Analysis to Cavitation
,”
ASME J. Fluids Eng.
,
106
(
3
), pp.
342
346
.10.1115/1.3243125
7.
Martin
,
C. S.
,
Medlarz
,
H.
,
Wiggert
,
D. C.
, and
Brennen
,
C.
,
1981
., “
Cavitation Inception in Spool Valves
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
564
575
.10.1115/1.3241768
8.
Lu
,
L.
,
Zou
,
J.
,
Fu
,
X.
,
Ruan
,
X. D.
,
Du
,
X. W.
,
Ryu
,
S.
, and
Ochiai
,
M.
,
2009
, “
Cavitating Flow in Non-Circular Opening Spool Valves With U-Grooves
,”
Proc. Int. Mech. Eng., Part C
,
223
(
10
), pp.
2297
2307
.10.1243/09544062JMES1504
9.
Zou
,
J.
,
Fu
,
X.
,
Du
,
X. W.
,
Ruan
,
X. D.
,
Ji
,
H.
,
Ryu
,
S.
, and
Ochiai
,
M.
,
2008
, “
Cavitation in a Non-Circular Opening Spool Valve With U-Grooves
,”
Proc. Int. Mech. Eng., Part A
,
222
(4), pp.
413
420
.10.1243/09576509JPE489
10.
Bourassa
,
C.
, and
Parsons
,
A.
,
2007
, “
Numerical Modeling of Cavitation in Jet Fuel
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 8–11,
AIAA
Paper No. 2007-339.10.2514/6.2007-339
11.
Davis
,
M. P.
,
Dunn
,
P. F.
, and
Thomas
,
F. O.
,
2007
, “
Jet Fuel Cavitation in a Converging Diverging Nozzle
,”
5th Joint ASME/JSME Fluids Engineering Conference
,
San Diego, CA
, July 30–August 2, pp.
385
390
,
ASME
Paper No. FEDSM2007-37108.10.1115/FEDSM2007-37108
12.
Arndt
,
R. E.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
143
175
.10.1146/annurev.fluid.34.082301.114957
13.
Li
,
Z.
,
Xing
,
T.
, and
Frankel
,
S. H.
,
2005
, “
Numerical Simulation of Vortex Cavitation in a Three-Dimensional Submerged Transitional Jet
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
714
725
.10.1115/1.1976742
14.
Xing
,
T.
, and
Frankel
,
S. H.
,
2002
, “
Effect of Cavitation on Vortex Dynamics in a Submerged Laminar Jet
,”
AIAA J.
,
40
(
11
), pp.
2266
2276
.10.2514/2.1563
15.
Singh
,
S.
,
Choi
,
J.
, and
Chahine
,
G. L.
,
2013
, “
Characterization of Cavitation Fields From Measured Pressure Signals of Cavitating Jets and Ultrasonic Horns
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091302
.10.1115/1.4024263
16.
Momma
,
T.
, and
Lichtarowicz
,
A.
,
1995
, “
A Study of Pressures and Erosion Produced by Collapsing Cavitation
,”
Wear
,
186
, pp.
425
436
.10.1016/0043-1648(95)07144-X
17.
Chahine
,
G. L.
, and
Courbière
,
P.
,
1987
, “
Noise and Erosion of Self-Resonating Cavitating Jets
,”
ASME J. Fluids Eng.
,
109
(
4
), pp.
429
435
.10.1115/1.3242684
18.
Soyama
,
H.
,
Yanauchi
,
Y.
,
Sato
,
K.
,
Ikohagi
,
T.
,
Oba
,
R.
, and
Oshima
,
R.
,
1996
, “
High-Speed Observation of Ultrahigh-Speed Submerged Water Jets
,”
Exp. Therm. Fluid Sci.
,
12
(
4
), pp.
411
416
.10.1016/0894-1777(95)00124-7
19.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2010
, “
Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows Around a Clark Y 11.7% Hydrofoil
,”
J. Fluid Sci. Technol.
,
5
(3), pp.
416
431
.10.1299/jfst.5.416
20.
Yuan
,
G. F.
,
Zhang
,
L. X.
,
Zhang
,
H. F.
, and
Wang
,
Z. F.
,
2011
, “
Numerical and Experimental Investigation of Performance of the Liquid-Gas and Liquid Jet Pumps in Desalination Systems
,”
Desalination
,
276
(
1–3
), pp.
89
95
.10.1016/j.desal.2011.03.029
21.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
22.
Philipp
,
A.
, and
Lauterborn
,
W.
,
1998
, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
,
361
, pp.
75
116
.10.1017/S0022112098008738
23.
Chahine
,
G. L.
,
1984
, “
Pressures Generated by a Bubble Cloud Collapse
,”
Chem. Eng. Commun.
,
28
(
4–6
), pp.
355
367
.10.1080/00986448408940143
24.
Hammitt
,
F. G.
,
1980
,
Cavitation and Multiphase Flow Phenomena
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.