With emission legislation becoming more stringent within the next years, almost all future internal combustion gasoline engines need to reduce specific fuel consumption, most of them by using turbochargers. Additionally, car manufactures attach high importance to a good drivability, which usually is being quantified as a target torque already available at low engine speeds—reached in transient response operation as fast as possible. These engine requirements result in a challenging turbocharger compressor and turbine design task, since for both not one single operating point needs to be aerodynamically optimized but the components have to provide for the optimum overall compromise for maximum thermodynamic performance. The component design targets are closely related and actually controlled by the matching procedure that fits turbine and compressor to the engine. Inaccuracies in matching a turbine to the engine full load are largely due to the pulsating engine flow characteristic and arise from the necessity of arbitrary turbine map extrapolation toward low turbine blade speed ratios and the deficient estimation of turbine efficiency for low engine speed operating points. This paper addresses the above described standard problems, presenting a methodology that covers almost all aspects of thermodynamic turbine design based on a comparison of radial and mixed-flow turbines. Wheel geometry definition with respect to contrary design objectives is done using computational fluid dynamics (CFD), finite element analysis (FEA), and optimization software. Parametrical turbine models, composed of wheel, volute, and standard piping allow for fast map calculation similar to steady hot gas tests but covering the complete range of engine pulsating mass flow. These extended turbine maps are then used for a particular assessment of turbine power output under unsteady flow admission resulting in an improved steady-state matching quality. Additionally, the effect of various design parameters like either volute sizing or the choice of compressor to turbine diameter ratio on turbine blade speed ratio operating range as well as well as turbine inertia effect is analyzed. Finally, this method enables the designer to comparatively evaluate the ability of a turbine design to accelerate the turbocharger speed for transient engine response while still offering a map characteristic that keeps fuel consumption low at all engine speeds.

References

References
1.
Bormann
,
D.
,
Pingen
,
B.
,
Müller
,
B.
,
Kelly
,
P.
,
Küpper
,
K.
, and
Wirth
,
M.
,
2009
, “
Der Antriebsstrang mit Einem Kleinen Down-Sizingmotor—Auslegungsstrategien und Systemkomponenten
,”
30th Internationale Wiener Motorensymposium
, Vienna, May 7–8.
2.
Sonner
,
M.
,
Wurms
,
R.
,
Heiduk
,
T.
, and
Eiser
,
A.
,
2010
, “
Unterschiedliche Bewertung von Zukünftigen Aufladekonzepten am Stationären Motorprüfstand und im Fahrzeug
,”
15th Aufladetechnische Konferenz, Dresden
, September 23–24.
3.
Hagelstein
,
D.
,
Hentschel
,
L.
,
Strobel
,
S.
,
Szengel
,
R.
,
Theobald
,
J.
, and
Middendorf
,
H.
,
2009
, “
Die Aufladeentwicklung für den Neuen 1.2l TSi Motor von Volkswagen
,”
14th Aufladetechnische Konferenz, Dresden
, September 24–25.
4.
Baines
,
N. C.
,
2005
,
Fundamentals of Turbocharging
,
Concepts ETI, Edwards Brothers Inc.
, Ann Arbor, MI.
5.
Japikse
,
D.
, and
Baines
,
N. C.
,
1994
,
Introduction to Turbomachinery
,
Concepts ETI, Oxford University Press
,
Oxford
.
6.
Wallace
,
F. J.
,
1971
, “
A Systematic Approach to the Design of Radial Inflow and Mixed Flow Turbines
,” NACA Report No. RM E51H06.
7.
Rajoo
,
S.
, and
Martinez-Botas
,
R.
,
2008
, “
Mixed Flow Turbine Research: A Review
,”
ASME J. Turbomach.
,
130
(
4
), p.
044001
.10.1115/1.2812326
8.
Baines
,
N. C.
,
2010
, “
Turbocharger Turbine Pulse Flow Performance and Modelling 25 Years On
,”
9th IMechE International Confererce on Turbochargers and Turbocharging
, London, May 19–20, pp. 347–362.10.1243/17547164C0012010028
9.
Hiereth
,
H.
, and
Prenninger
,
P.
,
2003
,
Aufladung der Verbrennungs-kraftmaschine
,
Springer-Verlag
, Austria.
10.
Naundorf
,
D.
,
Bolz
,
H.
, and
Mandel
,
M.
,
2001
, “
Design and Implementation of a New Generation of Turbo Charger Test Benches Using Hot Gas Technology
,”
SAE
Technical Paper No. 2001-01-0279.10.4271/2001-01-0279
11.
Engels
,
B.
,
1990
, “
Verbesserung des Instationärverhaltens von Abgasturboladern
,”
Technische Akademie Wuppertal
, Wuppertal, Germany.
12.
Scharf
,
J.
,
Schorn
,
N.
,
Smiljanovski
,
V.
,
Uhlmann
,
T.
, and
Aymanns
,
R.
,
2010
, “
Methods for Extended Turbocharger Mapping and Turbocharger Assessment
,”
15th Aufladetechnische Konferenz, Dresden
, September 23–24.
13.
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
Steady and Pulsating Flow Efficiency of a Waste-Gated Turbocharger Radial Flow Turbine for Automotive Application
,”
Energy
,
36
(1), pp.
459
465
.10.1016/j.energy.2010.10.019
14.
Reuter
,
S.
,
Koch
,
A.
, and
Kaufmann
,
A.
,
2010
, “
Extension of Performance Maps of Radial Turbocharger Turbines Using Pulsating Hot Gas Flow
,”
9th International Conference on Turbochargers and Turbocharging, London, May 19–20, pp. 263–280
.
15.
Suhrmann
,
J.
,
Peitsch
,
D.
,
Gugau
,
M.
,
Heuer
,
T.
, and
Tomm
,
U.
,
2010
, “
Validation and Development of Loss Models for Small Size Radial Turbines
,”
ASME
Paper No. GT2010-22666.10.1115/GT2010-22666
16.
Roclawski
,
H.
, and
Gugau
,
M.
,
2012
, “
Multidisciplinary Design Optimization of a Mixed Flow Turbine Wheel
,”
ASME
Paper No. GT2012-68233.10.1115/GT2012-68233
17.
Uhlmann
,
T.
, and
Pischinger
,
S.
, 2012, “
Erweiterte Turbinenkennfeld-Messung
,” FVV Herbsttagung 2012, Dortmund, Germany, September 27–28. FVV-Forschungsvorhaben Nr. 1038.
18.
Smiljanovski
,
V.
,
Schorn
,
N.
,
Scharf
,
J.
,
Funken
,
B.
, and
Pischinger
,
S.
,
2008
, “
Messung des Turbinenwirkungsgrades bei niedrigen Turboladerdrehzahlen
,”
13th Aufladetechnische Konferenz, Dresden
, September 25–26.
You do not currently have access to this content.