To assist microphysical modeling on particulate matter (PM) evolution emitted from aircraft engines, uptake coefficients of some volatile organic compounds on soot were experimentally determined in this study. The determined values vary from (1.0 ± 0.1) × 10−6 for water-miscible propylene glycol to (2.5 ± 0.1) × 10−5 for 2,6-dimethylnaphthalene, a polycyclic aromatic hydrocarbon. An inverse power-law correlation between uptake coefficient on soot and solubility in water was observed. Using the correlation, microphysical simulations were performed for the exhaust plume evolution from an idling aircraft, and we found that the model-predicted volatile PM composition on soot is comparable with those results from past field measurements.

References

1.
Schlager
,
H.
,
Konopka
,
P.
,
Schulte
,
P.
,
Schumann
,
U.
,
Ziereis
,
H.
,
Arnold
,
F.
,
Klemm
,
M.
,
Hagen
,
D. E.
,
Whitefield
,
P. D.
, and
Ovarlez
,
J.
,
1997
, “
In Situ Observation of Air Traffic Emission Signatures in the North Atlantic Flight Corridor
,”
J. Geophys. Res.
,
102
(D9), pp.
10739
10750
.10.1029/96JD03748
2.
Anderson
,
B. E.
,
Cofer
,
W. R.
,
Bagwell
,
D. R.
,
Barrick
,
J. W.
,
Hudgins
,
C. H.
, and
Brunke
,
K. E.
,
1998
, “
Airborne Observations of Aircraft Aerosol Emissions I: Total Nonvolatile Particle Emission Indices
,”
Geophys. Res. Lett.
,
25
(10), pp.
1689
1692
.10.1029/98GL00063
3.
Paladino
,
J.
,
Whitefield
,
P.
,
Hagen
,
D.
,
Hopkins
,
A. R.
, and
Trueblood
,
M.
,
1998
, “
Particle Concentration Characterization for Jet Engine Emissions Under Cruise Conditions
,”
Geophys. Res. Lett.
,
25
(10), pp.
1697
1700
.10.1029/98GL00652
4.
Schuman
,
U.
,
Arnold
,
F.
,
Busen
,
R.
,
Curtis
,
J.
,
Karcher
,
B.
,
Kiendler
,
A.
,
Petzold
,
A.
,
Schlager
,
H.
,
Schroder
,
F.
, and
Wohlfrom
,
K. H.
,
2002
, “
Influence of Fuel Sulfur on the Composition of Aircraft Exhaust Plumes: The Experiments SULFUR 1-7
,”
J. Geophys. Res.
,
107
(D15), p.
4247
.10.1029/2001JD000813
5.
Unal
,
A.
,
Hu
,
Y.
,
Chang
,
M. E.
,
Talat Odman
,
M.
, and
Russell
,
A. G.
,
2005
, “
Airport Related Emissions and Impacts on Air Quality: Application to the Atlanta International Airport
,”
Atmos. Environ.
,
39
(32), pp.
5787
5798
.10.1016/j.atmosenv.2005.05.051
6.
Wey
,
C. C.
,
Anderson
,
B. E.
,
Wey
,
C.
,
Miake-Lye
,
R. C.
,
Whitefield
,
P.
, and
Howard
,
R.
,
2007
, “
Overview on the Aircraft Particle Emissions Experiment
,”
J. Propul. Power
,
23
(5), pp.
898
905
.10.2514/1.26406
7.
Kärcher
,
B.
, and
Yu
,
F.
,
2009
, “
Role of Aircraft Soot Emissions in Contrail Formation
,”
Geophys. Res. Lett.
,
36
(1), p.
L01804
.10.1029/2008GL036649
8.
Wong
,
H.-W.
, and
Miake-Lye
,
R. C.
,
2010
, “
Parametric Studies of Contrail Ice Particle Formation in Jet Regime Using One-Dimensional Microphysical Modeling
,”
Atmos. Chem. Phys.
,
10
(
7
), pp.
3261
3272
.10.5194/acp-10-3261-2010
9.
Seisel
,
S.
,
Lian
,
Y.
,
Keil
,
T.
,
Trukhin
,
M. E.
, and
Zellner
,
R.
,
2004
, “
Kinetics of the Interaction of Water Vapor With Mineral Dust and Soot Surfaces at T = 298 K
,”
Phys. Chem. Chem. Phys.
,
6
(8), pp.
1926
1932
.10.1039/b314568a
10.
Kotzick
,
R.
,
Panne
,
U.
, and
Niessner
,
R.
,
1997
, “
Changes in Condensation Properties of Ultrafine Carbon Particles Subjected to Oxidation by Ozone
,”
J. Aerosol Sci.
,
28
(5), pp.
725
735
.10.1016/S0021-8502(96)00471-5
11.
Zuberi
,
B.
,
Johnson
,
K. S.
,
Aleks
,
G. K.
,
Molina
,
L. T.
,
Molina
,
M. J.
, and
Laskin
,
A.
,
2005
, “
Hydrophilic Properties of Aged Soot
,”
Geophys. Res. Lett.
,
32
(1), p.
L01807
10.1029/2004GL021496.
12.
Prince
,
A. P.
,
Wade
,
J. L.
,
Grassian
,
V. H.
,
Kleiber
,
P. D.
, and
Yound
,
M. A.
,
2002
, “
Heterogeneous Reactions of Soot Aerosols With Nitrogen Dioxide and Nitric Acid: Atmospheric Chamber and Knudsen Cell Studies
,”
Atmos. Environ.
,
36
(36-37), pp.
5729
5740
.10.1016/S1352-2310(02)00626-X
13.
Zuberi
,
B.
,
Jognson
,
K. S.
,
Aleks
,
G. K.
,
Molina
,
L. T.
,
Molina
,
M. J.
, and
Laskin
,
A.
,
2005
, “
Hydrophilic Properties of Aged Soot
,”
Geophys. Res. Lett.
,
32
(1), p.
L01807
10.1029/2004GL021496.
14.
Disselkamp
,
R. S.
,
Carpenter
,
M. A.
, and
Cowin
,
J. P.
,
2000
, “
A Chamber Investigation of Nitric Acid-Soot Aerosol Chemistry at 298 K
,”
J. Atmos. Chem.
,
37
(2), pp.
113
123
.10.1023/A:1006304724241
15.
Kleffmann
,
J.
, and
Wiesen
,
P.
,
2005
, “
Heterogeneous Conversion of NO2 and NO on HNO3 Treated Soot Surfaces: Atmospheric Implications
,”
Atmos. Chem. Phys.
,
5
(1), pp.
77
83
.10.5194/acp-5-77-2005
16.
Longfellow
,
C. A.
,
Ravishankara
,
A. R.
, and
Hanson
,
D. R.
,
2000
, “
Reactive and Nonreactive Uptake on Hydrocarbon Soot: HNO3, O3, and N2O5
,”
J. Geophys. Res.
,
105
(D19), pp.
24345
24350
.10.1029/2000JD900297
17.
Talukdar
,
R. K.
,
Loukhovitskaya
,
E. E.
,
Popovicheva
,
O. B.
, and
Ravishankara
,
A. R.
,
2006
, “
Uptake of HNO3 on Hexane and Aviation Kerosene Soots
,”
J. Phys. Chem. A
,
110
(31), pp.
9643
9653
.10.1021/jp060556u
18.
Rogaski
,
C. A.
,
Golden
,
D. M.
, and
Williams
,
L. R.
,
1997
, “
Reactive Uptake and Hydration Experiments on Amorphous Carbon Treated With NO2, SO2, O3, HNO3, and H2SO4
,”
Geophys. Res. Lett.
,
24
(4), pp.
381
384
.10.1029/97GL00093
19.
Saathoff
,
H.
,
Naumman
,
K.-H.
,
Riemer
,
N.
,
Kamm
,
S.
,
Möhler
,
O.
,
Schurath
,
U.
,
Vogel
,
H.
, and
Vogel
,
B.
,
2001
, “
The Loss of NO2, HNO3, NO3/N2O5, and HO2/HOONO2 on Soot Aerosol: A Chamber and Modeling Study
,”
Geophys. Res. Lett.
,
28
(10), pp.
1957
1960
.10.1029/2000GL012619
20.
Kircher
,
U.
,
Scheer
,
V.
, and
Vogt
,
R.
,
2000
, “
FTIR Spectroscopic Investigation of the Mechanism and Kinetics of the Heterogeneous Reaction of NO2 and HNO3 With Soot
,”
J. Phys. Chem. A
,
104
(39), pp.
8908
8915
.10.1021/jp0005322
21.
Karagulian
,
F.
, and
Rossi
,
M. J.
,
2007
, “
Heterogeneous Chemistry of the NO3 Free Radical and N2O5 on Decane Flame Soot at Ambient Temperature: Reaction Products and Kinetics
,”
J. Phys. Chem. A
,
111
(10), pp.
1914
1926
.10.1021/jp0670891
22.
Rodriguez-Fortea
,
A.
, and
Iannuzzi
,
M.
,
2008
, “
First-Principles Molecular Dynamics Study of the Heterogeneous Reduction of NO2 on Soot Surface
,”
J. Phys. Chem. C
,
112
(49), pp.
19642
19648
.10.1021/jp807787s
23.
Aubin
,
D. G.
, and
Abbatt
,
J. P. D.
,
2007
, “
Interaction of NO2 With Hydrocarbon Soot: Focus on HONO Yield, Surface Modification, and Mechanism
,”
J. Phys. Chem. A
,
111
(28), pp.
6263
6273
.10.1021/jp068884h
24.
Ghigo
,
G.
,
Causa
,
M.
,
Maranzana
,
A.
, and
Tonachini
,
G.
,
2006
, “
Aromatic Hydrocarbon Nitration Under Tropospheric and Combustion Conditions. A Theoretical Mechanistic Study
,”
J. Phys. Chem. A
,
110
(49), pp.
13270
13282
.10.1021/jp064459c
25.
Ammann
,
M.
,
Kalberer
,
M.
,
Jost
,
D. T.
,
Tobler
,
L.
,
Rössler
,
E.
,
Piguet
,
D.
,
Gäggeler
,
H. W.
, and
Baltensperger
,
U.
,
1998
, “
Heterogeneous Production of Nitrous Acid on Soot in Polluted Air Masses
,”
Nature
,
395
(6698), pp.
157
160
.10.1038/25965
26.
Saathoff
,
H.
,
Naumann
,
K.-H.
,
Möhler
,
O.
,
Jonsson
,
A. M.
,
Hallquist
,
M.
,
Kiendler-Scharr
,
A.
,
Mentel
,
Th. F.
,
Tillmann
,
R.
, and
Schurath
,
U.
,
2008
, “
Temperature Dependence of Yields of Secondary Organic Aerosols From the Ozonolysis of α-Pinene and Limonene
,”
Atmos. Chem. Phys. Discuss.
,
8
(4), pp.
15595
15664
.10.5194/acpd-8-15595-2008
27.
Zhang
,
H. Z.
,
Li
,
Y. Q.
,
Xia
,
J. R.
,
Davidovits
,
P.
,
Williams
,
L. R.
,
Jayne
,
J. T.
,
Kolb
,
C. E.
, and
Worsnop
,
D. R.
,
2003
, “
Uptake of Gas-Phase Species by 1-Octanol. I. Uptake of α-Pinene, γ-Terpinene, p-Cymene, and 2-Methyl-2-Hexanol as a Function of Relative Humidity and Temperature
,”
J. Phys. Chem. A
,
107
(33), pp.
6388
6397
.10.1021/jp0342529
28.
Zhang
,
H. Z.
,
Li
,
Y. Q.
,
Davidovits
,
P.
,
Williams
,
L. R.
,
Jayne
,
J. T.
,
Kolb
,
C. E.
, and
Worsnop
,
D. R.
,
2003
, “
Uptake of Gas-Phase Species by 1-Octanol. II. Uptake of Hydrogen Halides and Acetic Acid as a Function of Relative Humidity and Temperature
,”
J. Phys. Chem. A
,
107
(33), pp.
6398
6407
.10.1021/jp034254t
29.
Liscinsky
,
D. S.
,
Yu
,
Z.
,
True
,
B.
,
Peck
,
J.
,
Jennings
,
A. C.
,
Wong
,
H. W.
,
Jun
,
M.
,
Franklin
,
J.
,
Herndon
,
S. C.
,
Waitz
,
I.
, and
Miake-Lye
,
R. C.
,
2013
, “
Uptake of Naphthalene by Combustion Soot Particles
,”
Environ. Sci. Technol.
,
47
(9), pp.
4875
4881
.10.1021/es304912d
30.
Eganhouse
,
R. P.
, and
Calder
,
J. A.
,
1976
, “
The Solubility of Medium Molecular Weight Aromatic Hydrocarbons and the Effects of Hydrocarbon Co-Solutes and Salinity
,”
Geochim. Cosmochim. Acta
,
40
(5), pp.
555
561
.10.1016/0016-7037(76)90223-4
31.
Spicer
,
C. W.
,
Holdren
,
M. W.
,
Smith
,
D. L.
,
Hughes
,
D. P.
, and
Smith
,
M. D.
,
1992
, “
Chemical Composition of Exhaust From Aircraft Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
111
117
.10.1115/1.2906292
32.
Knighton
,
W. B.
,
Rogers
,
T.
,
Wey
,
C. C.
,
Anderson
,
B. E.
,
Herndon
,
S. C.
,
Yelvington
,
P. E.
, and
Miake-Lye
,
R. C
,
2007
, “
Application of Proton Transfer Reaction Mass Spectrometry (PTR-MS) for Measurement of Volatile Organic Trace Gas Emissions From Aircraft
,”
J. Propul. Power
,
23
(5), pp.
949
958
.10.2514/1.22965
33.
Henning
,
S.
,
Ziese
,
M.
,
Kiselev
,
A.
,
Saathoff
,
H.
,
Möhler
,
O.
,
Mentel
,
T. F.
,
Buchholz
,
A.
,
Spindler
,
C.
,
Michaud
,
V.
,
Monier
,
M.
,
Sellegri
,
K.
, and
Stratmann
,
F.
,
2012
, “
Hygroscopic Growth and Droplet Activation of Soot Particles: Uncoated, Succinic or Sulfuric Acid Coated
,”
Atmos. Chem. Phys.
,
12
(10), pp.
4525
4537
.10.5194/acp-12-4525-2012
34.
Marsh
,
R.
,
Crayford
,
A.
,
Petzold
,
A.
,
Johnson
,
M.
,
Williams
,
P.
,
Ibrahim
,
A.
,
Kay
,
P.
,
Morris
,
S.
,
Delhaye
,
D.
,
Lottin
,
D.
,
Vancassel
,
X.
,
Raper
,
D.
,
Christie
,
S.
,
Bennett
,
M.
,
Miller
,
M.
,
Sevcenco
,
Y.
,
Rojo
,
C.
,
Coe
,
H.
, and
Bowen
,
P.
,
2011
, “
Studying, Sampling and Measuring of Aircraft Particulate Emissions II (SAMPLE II)—Final Report
,” European Aviation Safety Agency, Cologne, Germany, Report No. EASA.2009.OP.18.
35.
Timko
,
M. T.
,
Onasch
,
T. B.
,
Northway
,
M. J.
,
Jayne
,
J. T.
,
Canagaratna
,
M. R.
,
Herndon
,
S. C.
,
Wood
,
E. C.
,
Miake-Lye
,
R. C.
, and
Knighton
,
W. B.
,
2010
, “
Gas Turbine Engine Emissions—Part II: Chemical Properties of Particulate Matter
,”
ASME J. Eng. Gas Turbine Power
,
132
(
6
), p.
061505
.10.1115/1.4000132
36.
McWilliam
,
I. G.
, and
DeWar
,
R. A.
,
1958
, “
Flame Ionization Detector for Gas Chromatography
,”
Nature
,
181
(4611), p.
760
.10.1038/181760a0
37.
Jayne
,
J. T.
,
Leard
,
D. C.
,
Zhang
,
X.
,
Davidovits
,
P.
,
Smith
,
K. A.
,
Kolb
,
C. E.
, and
Worsnop
,
D. R.
,
2000
, “
Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles
,”
Aerosol Sci. Technol.
,
33
(1-2), pp.
49
70
.10.1080/027868200410840
38.
Jimenez
,
J. L.
,
Jayne
,
J. T.
,
Shi
,
Q.
,
Kolb
,
C. E.
,
Worsnop
,
D. R.
,
Yourshaw
,
I.
,
Seinfeld
,
J. H.
,
Flagan
,
R. C.
,
Zhang
,
X.
,
Smith
,
K. A.
,
Morris
,
J.
, and
Davidovits
,
P.
,
2003
, “
Ambient Aerosol Sampling Using the Aerodyne Aerosol Mass Spectrometer
,”
J. Geophys. Res.
,
108
(
D7
), p. 8425.10.1029/2001JD00121310.1029/2001JD001213
39.
Canagaratna
,
M. R.
,
Jayne
,
J. T.
,
Jimenez
,
J. L.
,
Allan
,
J. D.
,
Alfarra
,
M. R.
,
Zhang
,
Q.
,
Onasch
,
T. B.
,
Drewnick
,
F.
,
Coe
,
H.
,
Middlebrook
,
A.
,
Delia
,
A.
,
Williams
,
L. R.
,
Trimborn
,
A. M.
,
Northway
,
M. J.
,
DeCarlo
,
P. F.
,
Kolb
,
C. E.
,
Davidovits
,
P.
, and
Worsnop
,
D. R.
,
2007
, “
Chemical and Microphysical Characterization of Ambient Aerosols With the Aerodyne Aerosol Mass Spectrometer
,”
Mass Spectrosc. Rev.
,
26
(2), pp.
185
222
.10.1002/mas.20115
40.
Linstrom
,
P. J.
, and
Mallard
,
W. J.
, eds.,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
41.
Liu
,
P. S. K.
,
Deng
,
R.
,
Smith
,
K. A.
,
Williams
,
L. R.
,
Jayne
,
J. T.
,
Canagaratna
,
M. R.
,
Moore
,
K.
,
Onasch
,
T. B.
,
Worsnop
,
D. R.
, and
Deshler
,
T.
,
2007
, “
Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer
,”
Aerosol Sci. Technol.
,
41
(8), pp.
721
733
.10.1080/02786820701422278
42.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
,
1998
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,
Wiley
,
New York
.
43.
Davidovits
,
P.
,
Hu
,
J. H.
,
Worsnop
,
D. R.
,
Zahnister
,
M. S.
, and
Kolb
,
C. E.
,
1995
, “
Entry of Gas Molecules Into Liquids
,”
Faraday Discuss.
,
100
, pp.
65
82
.10.1039/fd9950000065
44.
Worsnop
,
D. R.
,
Zahniser
,
M. S.
,
Kolb
,
C. E.
,
Gardner
,
J. A.
,
Watson
,
L. R.
,
Van Doren
,
J. M.
,
Jayen
,
J. T.
, and
Davidovits
,
P.
,
1989
, “
Temperature Dependence of Mass Accommodation of SO2 and H2O2 on Aqueous Surfaces
,”
J. Phys. Chem.
,
93
(3), pp.
1159
1172
.10.1021/j100340a027
45.
DeCarlo
,
P. F.
,
Slowik
,
J. G.
,
Worsnop
,
D. R.
,
Davidovits
,
P.
, and
Jimenez
,
J. L.
,
2004
, “
Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory
,”
Aerosol Sci. Technol.
,
38
(12), pp.
1185
1205
.10.1080/027868290903907
46.
Slowik
,
J. G.
,
Stainken
,
K.
,
Davidovits
,
P.
,
Williams
,
L. R.
,
Jayne
,
J. T.
,
Kolb
,
C. E.
,
Worsnop
,
D. R.
,
Rudich
,
Y.
,
DeCarlo
,
P. F.
, and
Jimenez
,
J. L.
,
2004
, “
Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio
,”
Aerosol Sci. Technol.
,
38
(12), pp.
1206
1222
.10.1080/027868290903916
47.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multi-Molecular Layers
,”
J. Am. Chem. Soc.
,
60
(2), pp.
309
319
.10.1021/ja01269a023
48.
Levitt
,
N. P.
,
Zhang
,
R.
,
Xue
,
H.
, and
Chen
,
J.
,
2007
, “
Heterogeneous Chemistry of Organic Acids on Soot Surfaces
,”
J. Phys. Chem. A
,
111
(22), pp.
4804
4814
.10.1021/jp0700480
49.
Aubin
,
D. G.
, and
Abbatt
,
J. P.
,
2003
, “
Adsorption of Gaseous Nitric Acid to n-Hexane Soot: Thermodynamics and Mechanism
,”
J. Phys. Chem. A
,
107
(50), pp.
11030
11037
.10.1021/jp036105g
50.
Hanson
,
D. R.
,
Ravishankara
,
A. R.
, and
Lovejoy
,
E. R.
,
1996
, “
Reaction of BrONO2 With H2O on Submicron Sulfuric Acid Aerosol and the Implications for the Lower Stratosphere
,”
J. Geophys. Res.
,
101
(D4), pp.
9063
9069
.10.1029/96JD00347
51.
Hermann
,
R. B.
,
1972
, “
Theory of Hydrophobic Bonding. II. Correlation of Hydrocarbon Solubility in Water With Solvent Cavity Surface Area
,”
J. Phys. Chem.
,
76
(19), pp.
2754
2759
.10.1021/j100663a023
52.
Pierotti
,
R. A.
,
1976
, “
A Scaled Particle Theory of Aqueous and Nonaqueous Solutions
,”
Chem. Rev.
,
76
(6), pp.
717
726
.10.1021/cr60304a002
53.
Breslow
,
R.
,
1991
, “
Hydrophobic Effect on Simple Organic Reactions in Water
,”
Acc. Chem. Res.
,
24
(6), pp.
159
164
.10.1021/ar00006a001
54.
Ruelle
,
P.
,
Buchmann
,
M.
,
Nam-Tran
,
H.
, and
Kesselring
,
U. W.
,
1992
, “
Comparison of the Solubility of Polycyclic Aeromatic Hydrocarbons in Non-associated and Associated Solvents: The Hydrophobic Effect
,”
Int. J. Pharm.
,
87
(1-3), pp.
47
57
.10.1016/0378-5173(92)90226-R
55.
Seth
,
R.
,
Mackay
,
D.
, and
Muncke
,
J.
,
1999
, “
Estimating the Organic Carbon Partition Coefficient and Its Variability for Hydrophobic Chemicals
,”
Environ. Sci. Technol.
,
33
(14), pp.
2390
2394
.10.1021/es980893j
56.
Meyer
,
E. E.
,
Rosenberg
,
K. J.
, and
Israelachvili
,
J.
,
2006
, “
Recent Progress in Understanding Hydrophobic Interactions
,”
Proc. Natl. Acad. Sci. USA
,
103
(43), pp.
15739
15746
.10.1073/pnas.0606422103
57.
Wong
,
H.-W.
,
Yelvington
,
P. E.
,
Timko
,
M. T.
,
Onasch
,
T. B.
,
Miake-Lye
,
R. C.
,
Zhang
,
J.
, and
Waitz
,
I. A.
,
2008
, “
Microphysical Modeling of Ground-Level Aircraft-Emitted Aerosol Formation: Roles of Sulfur-Containing Species
,”
J. Propul. Power
,
24
(3), pp.
590
602
.10.2514/1.32293
58.
Jun
,
M.
,
2011
, “
Microphysical Modeling of Ultrafine Hydrocarbon-Containing Aerosols in Aircraft Emissions
,” Ph.D. dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
59.
Robinson
,
A. L.
,
Donahue
,
N. M.
,
Shrivastava
,
M. K.
,
Weitkamp
,
E. A.
,
Sage
,
A. M.
,
Grieshop
,
A. P.
,
Lane
,
T. E.
,
Pierce
,
J. R.
, and
Pandis
,
S. N.
,
2007
, “
Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging
,”
Science
,
315
(5816), pp.
1259
1262
.10.1126/science.1133061
60.
May
,
A. A.
,
Presto
,
A. A.
,
Hennington
,
C. J.
,
Nguyen
,
N. T.
,
Gordon
,
T. D.
, and
Robinson
,
A. L.
,
2013
, “
Gas-Particle Partitioning of Primary Organic Aerosol Emissions: (2) Diesel Vehicles
,”
Environ. Sci. Technol.
,
47
(15), pp.
8288
8296
.10.1021/es400782j
61.
Lukachko
,
S. P.
,
Waitz
,
I. A.
,
Miake-Lye
,
R. C.
, and
Brown
,
R. C.
,
2008
, “
Engine Design and Operational Impacts on Particulate Matter Precursor Emissions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021505
.10.1115/1.2795758
62.
Tremmel
,
H. G.
, and
Schumann
,
U.
,
1999
, “
Model Simulations of Fuel Sulfur Conversion Efficiencies in an Aircraft Engine: Dependence on Reaction Rate Constants and Initial Species Mixing Ratios
,”
Aerosp. Sci. Technol.
,
3
(7), pp.
417
430
.10.1016/S1270-9638(99)00101-7
63.
Pande
,
S. G.
, and
Handy
,
D. R.
,
1995
, “
An In-Depth Evaluation of Combustion Performance Predictors of Aviation Sooting Tendencies
,”
Energy Fuels
,
9
(3), pp.
448
457
.10.1021/ef00051a009
64.
Curtis
,
J.
,
Arnold
,
F.
, and
Schulte
,
P.
,
2002
, “
Sulfuric Acid Measurements in the Exhaust Plume of a Jet Aircraft in Flight: Implications of the Sulfuric Acid Formation Efficiency
,”
Geophys. Res. Lett.
,
29
(7), p. 1113.10.1029/2001GL013813
65.
Katragkou
,
E.
,
Wilhelm
,
S.
,
Arnold
,
F.
, and
Wilson
,
C.
,
2004
, “
First Gaseous Sulfur (VI) Measurements in the Simulated Internal Flow of an Aircraft Engine During Project PartEmis
,”
Geophys. Res. Lett.
,
31
, p.
L02117
.10.1029/2001JD000813
66.
Nickels
,
T. B.
, and
Perry
,
A. E.
,
1996
, “
An Experimental and Theoretical Study of the Turbulent Coflowing Jet
,”
J. Fluid Mech.
,
309
, pp.
157
182
.10.1017/S0022112096001590
You do not currently have access to this content.